首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In stream ecosystems, the growth of aquatic primary producers is affected by spatial and temporal variations in the riparian canopy, which can influence the availability of light resources. Aquatic plants can acclimate to low light environments by employing a suite of morphological or physiological mechanisms to increase light capture or photosynthetic efficiency. Some species may also use alternate types of propagules to colonize environments with heterogeneous light environments. In a greenhouse experiment we examined the morphological and physiological response of watercress (Nasturtium officinale R. Br.) to a gradient of increasing light levels, which ranged from 7% ambient light to full sunlight. We also determined if watercress seedlings and vegetative fragments differed in their growth response to increasing light levels. Total biomass and root biomass of seedlings and vegetative fragments decreased with decreasing light levels. The difference in plant biomass across treatments was due to morphological changes in total canopy area and leaf area, both of which increased with decreasing light levels. Seedlings and vegetative fragments did not differ in their response to light availability, but vegetative fragments had higher final biomass as a result of higher initial biomass. Physiological acclimation to low light levels appears to be of secondary importance for watercress as the concentrations of total chlorophyll, chlorophyll a, chlorophyll b, and chlorophyll a:b did not differ among light levels or between seedlings and vegetative fragments. Seedlings and vegetative fragments grown under high light levels had a greater percentage of carbon and a lower percentage of nitrogen than plants grown under low light conditions. The results of this study indicate that watercress displays considerable morphological plasticity and acclimates to low light conditions primarily by increasing leaf area and canopy surface area. There is no evidence that the type of watercress propagule (seedling vs. vegetative fragment) imparts any growth advantage in low light environments and watercress grown from either type of propagule showed no differences in their morphological or physiological responses to varying light regimes. Handling editor: S. M. Thomaz  相似文献   

2.
This study used nine populations of Trifolium repens L. (white clover) to investigate possible relationships between plant morphological attributes and responses to ultraviolet-B (UV-B) radiation. Plants were exposed to 0 or 13.3 kJ·m(-2) ·day(-1) UV-B for 12 weeks. Drought was applied in parallel to these treatments during the last 4 weeks of the experiment to test whether limited moisture availability would alter morphological UV-B responses. UV-B affected plant morphology under well-watered conditions, reducing leaf size by 15%, leaf number by 5% and stolon elongation by 19%. The number of leaf primordia in the apical bud was decreased by 4% under UV-B, and by 12% under drought. In drought-exposed plants, leaf size was reduced by 50%, leaf number by 30% and stolon elongation by 60%. In addition, drought reduced specific leaf area (SLA) by 33% and increased leaf percentage dry mass (PDM) by 40%. UV-B-induced reduction in plant biomass in the T. repens populations was associated with higher plant productivity and this was further linked to larger leaf size as well as to lower PDM. In conclusion, the findings suggest that morphological attributes conferring fast potential growth under productive conditions carry a cost in the form of lower biomass accumulation under UV-B.  相似文献   

3.
珍稀树种红花玉兰对其华南原产地的自然环境有良好的适应性, 但在华北地区却生长不良。通过对红花玉兰在华北地区一个生长季内对三种光照水平(100%、70%、40%全光照)的光合和生长响应分析, 结果表明:在70%全光照条件下, 红花玉兰幼苗的净光合速率、光饱和点、株高、基径、根生物量和茎生物量均达到最高水平。随着光照强度的减弱, 暗呼吸速率、光补偿点、比叶重量、叶片厚度和密度显著降低, 表观量子效率、最大荧光Fm、可变荧光Fv、Fm/Fo(Fo为初始荧光)、Fv/Fo、Fv/Fm、叶绿素含量、叶面积和叶柄角度均显著增大。说明70%全光照最适于一年生红花玉兰幼苗在华北地区的生长, 全光照和40%全光照条件下幼苗则因光量的过剩和不足而生长不良。因此建议将红花玉兰栽植在林缘或林窗地带, 可为这一珍稀濒危树种在华北地区的引种提供有利的适生光照环境。  相似文献   

4.
Light is one of the main factors of physical environment and it controls plant growth and development by interfering with photosynthesis, especially concerning CO2 assimilation. Photosynthetic characteristics and growth of C3 epiphytic orchids Miltonia flavescens and Miltonia spectabilis var. moreliana were analyzed under four radiation regimens (25, 50 and 75?% of global radiation and full sunlight). Anatomical characterizations were performed on plants grown at 25?% shade. Artificial shading was obtained using different shading nylon nets. The highest values of light-saturated photosynthetic, dark respiration, net photosynthetic and leaf transpiration rates, stomatal conductance and intercellular to atmospheric CO2 concentration ratio were observed at full sunlight and 25?% shade. Moreover, both species allocated greater amount of leaf dry weight in those treatments. On the other hand, it was observed a greater investment in pseudobulb biomass in more shaded conditions (50 and 75?%), corroborating with the highest values of intrinsic water-use efficiency observed in those treatments. It was found a significant effect of shading on leaf area and specific leaf area. The anatomical features reflected strategies to save water. The phenotypic plasticity and principal component analysis suggested that the physiological traits were more responsive to light levels than the morphological traits. The results indicate that those species appear to be adapted to high irradiances conditions and are capable of adjusting, via morphophysiological changes, to light availability.  相似文献   

5.
光强对杉木幼苗形态特征和叶片非结构性碳含量的影响   总被引:3,自引:0,他引:3  
选取南方重要的造林树种杉木(Cunninghamia lanceolata(Lamb.)Hook)幼苗为研究对象,通过搭建遮荫棚设置5个光照强度(分别为自然光照的100%、60%、40%、15%和5%),研究了幼苗在不同光照强度下的生长形态、生物量积累及分配、叶片的非结构性碳含量(NSC)特征。结果显示:(1)叶长、叶宽和叶面积在40%光照强度下最大,而比叶面积和叶片相对含水量随着光照强度的降低呈递增趋势;(2)随着光照强度的降低,杉木幼苗各器官生物量下降,根生物量比和根冠比降低,茎和叶生物量比增加;(3)杉木幼苗在60%光照强度下叶片非结构性碳含量最高,5%光照强度下含量最低;(4)杉木幼苗比叶面积与叶生物量以及与非结构性碳含量之间存在极显著的负相关关系(P0.01),叶生物量与非结构性碳含量之间存在极显著的正相关关系(P0.01)。杉木幼苗能够通过形态学上的可塑性来适应不同的光强环境,提高光竞争能力和生存适合度,但在5%光照强度下,由于较难维持碳收支平衡而不利于其生长和存活。  相似文献   

6.
闽楠幼树光合特性及生物量分配对光环境的响应   总被引:9,自引:0,他引:9  
王振兴  朱锦懋  王健  汪滢  卢钰茜  郑群瑞 《生态学报》2012,32(12):3841-3848
设置100%光环境(L100)、40%光环境(L40)、8%光环境(L8)3种光照梯度,分析万木林闽楠(Phoebe bournei)幼树的光合特性及生物量分配特征对不同光环境的响应。结果表明:(1)闽楠幼树在不同光环境下的最大净光合速率(Pnmax),表观量子效率(AQY),光饱和点(LSP),光补偿点(LCP),暗呼吸速率(Rd)均有显著差异(P<0.05),且随着光照强度的降低,Pnmax,LSP,LCP,Rd随之降低,而AQY却呈现升高的趋势。(2)总生物量、茎生物量、叶生物量、根生物量均表现为L100最大,根冠比、叶生物量比、茎生物量比及根生物量比在3种光环境下无显著差异。(3)闽楠幼树通过改变光合特性,生物量积累来适应光环境的变化,其中光照强度的降低限制了生物量的积累,但并未显著改变生物量地上地下分配比例。闽楠幼树在3种光环境下生物量分配比例并无显著的改变,生物量分配可塑性极低可能是闽楠零散分布的一个重要非人为干扰因素。(4)闽楠幼树所采取的生存策略以地上部分生长为主,光照强度降低时则采取保守策略进行缓慢的资源获取和消耗,全光照条件下采取快速的资源获取和消耗策略。未来造林时可以将闽楠与毛竹(Phyllostachys pubescens)混交来减少郁闭度,促进闽楠幼树的生长。  相似文献   

7.
  • Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle‐leaved) and observed tolerance to shade, when growing in two contrasting light treatments – open (about 20% of full sunlight) and shade (about 5% of full sunlight).
  • We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments.
  • Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) – leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area‐based rates of light‐saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade.
  • We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle‐leaved conifers in response to shade. However, an expectation of higher plasticity in shade‐intolerant species than in shade‐tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit.
  相似文献   

8.
为了解光照对海南龙血树(Dracaena cambodiana)幼苗生长的影响,研究了不同光照环境下海南龙血树幼苗形态、生理特性和生物量分配的变化,并分析了其生态适应性。结果表明,海南龙血树幼苗的形态、生理和生物量分配指标在不同光照强度间存在显著差异,各指标的可塑性指数为0.08~0.86,其中根茎叶及总生物量的可塑性指数普遍较高(0.67~0.86),表明海南龙血树幼苗有较好的光照适应性,其策略主要是通过调整根茎叶生物量的分配来适应光照的变化。随着光照强度的降低,海南龙血树幼苗的比叶面积、叶根比呈现显著增大趋势,表明幼苗可通过增加单株叶面积比例,扩大光合作用面积,有效调节自身生物量配置。37.3%自然光照(L2)是海南龙血树幼苗生长的最佳光照强度。现存海南龙血树生境改变,生境缺少林荫以致光照强度过大,不利于幼苗根系生长,难以度过干旱季节,可能是海南龙血树自然更新失败的重要原因之一。  相似文献   

9.
光照和氮素对喜旱莲子草形态特征和生物量分配的影响   总被引:3,自引:0,他引:3  
研究了两个光照梯度和3个土壤氮素水平交互作用对喜旱莲子草(Alternan thera philoxeroides(Mart.)Griseb.)形态特征和生物量分配的影响。结果表明,全光照促进喜旱莲子草总生物量的积累,但在遮荫条件下,喜旱莲子草可以通过增加株高、光合叶面积和改变生物量分配来适应弱光生境。土壤中氮素含量对喜旱莲子草生长有明显影响,总生物量、株高、叶面积、茎生物量比和叶生物量比等随土壤氮素水平增加而增加。光照和氮素的交互作用对总生物量、根生物量比、茎生物量比和叶生物量比也有显著影响。随着氮素水平的增高,遮荫和高光照处理下喜旱莲子草的叶面积、总生物量和叶生物量比之间的差异减小,而株高和根生物量比之间的差异增大。此外,光照强度对茎生物量比的影响具有明显的氮素浓度依赖性,低氮条件下,茎生物量比在高光照处理下显著高于遮荫处理,而在中氮条件下,遮荫处理却显著高于高光照处理,且在高氮处理下其差异进一步加大。这些结果表明喜旱莲子草在高氮素环境下能够通过形态可塑性和生物量分配模式的改变来适应弱光环境所带来的不利影响。研究结果不但可为研究喜旱莲子草对异质生境的入侵机制提供资料,也可为进一步研究喜旱莲子草的入侵和扩散与农业等生态系统中土壤氮素残留的关系提供参考。    相似文献   

10.
 比较研究了不同光强下生长的(透光率分别为12.5%、36%、50%、100%)两种入侵性不同的外来种——紫茎泽兰(Eupatorium adenophorum)和兰花菊三七(Gynura sp.)的生物量分配、叶片形态和生长特性。结果表明: 1)两种植物叶片形态对光环境的反应相似。弱光下比叶面积(SLA)、平均单叶面积(MLS)和叶面积比(LAR)较大,随着光强的升高,SLA、MLS、LAR和叶根比(LARMR)降低。2)100%光强下紫茎泽兰叶生物量比(LMR)、叶重分数(LMF)和叶面积指数高于低光强下的值,也高于兰花菊三七,支持结构生物量比(SBR)则相反。强光下紫茎泽兰叶片自遮荫严重,这可能是其表现入侵性的重要原因之一;兰花菊三七分枝较多,避免了叶片自遮荫,较多的分枝利于种子形成对其入侵有利。3)随生长环境光强的升高,两种植物的净同化速率(NAR)、相对生长速率(RGR)和生长对NAR的响应系数均升高(但100%光强下兰花菊三七RGR降低),平均叶面积比(LARm)和生长对LARm的响应系数均降低,但不同光强下LARm对生长的影响始终大于NAR。4)随着光强的减弱,两种植物都增加高度以截获更多光能,但它们的生物量分配策略不同,紫茎泽兰根生物量比(RMR)降低,SBR增大,而兰花菊三七SBR降低,RMR增大。紫茎泽兰的生物量分配策略更好的反应了弱光环境中的资源变化情况。结论:紫茎泽兰对光环境的适应能力强于兰花菊三七。  相似文献   

11.
The effects of soil-water availability on leaf light acclimation and whole-plant carbon gain were examined in Arisaema heterophyllum Blume, a riparian deciduous forest understorey plant. Photosynthesis, above-ground morphology and ramet biomass accumulation (relative growth rate: RGR of a corm for a full leaf life-span) were measured on plants raised under three light treatments combined with two soil water conditions. The two higher light treatments during growth (high: max. 550 μmol photons m–2 s–1; medium: 150 μmol photons m–2 s–1) resulted in a twofold increase in RGRs, 30% higher photosynthetic capacities and 20% less photosynthetic low-light use efficiency than those under a low light condition (50 μmol photons m–2 s–1). Leaf area was the smallest and leaf mass area ratio was the largest under the high light treatment. Water stress decreased both photosynthetic rate and leaf area and, hence, RGR in all the light regimes. However, water stress did not alter the general patterns of physiological and morphological responses to different light regimes. We estimated that higher photosynthetic low-light use efficiency and larger leaf area in the low light leaf would lead to a threefold carbon gain as compared with the high light leaf under simulated low light conditions. Both experimental and simulation results suggest that the physiological and morphological acclimations tend to be beneficial to carbon gain when light availability is low, whereas they favor increased water use efficiency when light availability is sufficiently high. Electronic Publication  相似文献   

12.
设置不同光强梯度(透光率分别为100%、40%、20%、10%和5%,光照强度PPFD分别为201.3、77.0、37.5、19.2、9.8 μmol·m-2·s-1),研究光对杉木种子萌发和幼苗早期生长的影响,分析杉木种子萌发、幼苗存活、生长、形态响应、生物量积累及其分配格局对不同光环境的响应策略.结果表明: 杉木种子的萌发率、存活率、建植率和萌发指数在不同光强梯度下均有显著差异,且40%的透光率是种子最适萌发条件,萌发率最高,而全光照下存活率和建植率最高;随光照强度的减弱,杉木幼苗茎长增大,根长、子叶长、子叶厚、真叶数呈降低趋势,而基径在各光照强度间无显著差异;总生物量、根生物量、茎生物量、叶生物量均表现为全光照下最大.随着光照强度的减弱,光合组织与非光合组织生物量比、叶生物量比呈降低趋势,茎生物量比呈增加趋势,根冠比和根生物量比无显著差异.弱光环境促进杉木种子萌发,不利于杉木幼苗存活和生长.在弱光环境下,杉木幼苗通过增大茎生物量来提高对弱光环境的耐受力.  相似文献   

13.
Acer buergerianum Miq. (Trident maple) is a native species of China with a large distribution, but exist in small population. Water and light are two important factors limiting plant growth and are crucial in the framework of forest regeneration. However, there is no consensus on how shade interacts with drought. Four hypotheses in the recent literature variously predict that shade will have a stronger, weaker or equal impact on seedlings under drought stress. This study investigated the interactive responses of A. buergerianum to light and water focusing on seedling growth, leaf morphology and biomass partitioning by performing a growth experiment in pots with different water supply regimes [15, 35, 55, 75, 95 % of field capacity (FC)] combined with two light regimes (10 and 66 % of full sunlight). After 123 days treatment, the results showed that shade greatly reduced growth and biomass, in contrast enhancing the amount of chlorophyll, the amount of water in the leaves, and the specific leaf area. Drought reduced growth, biomass, and the bulk of the leaves. Most leaf traits and biomass characteristics had strong interactions in their responses to light and water treatments. Allometric analysis revealed that water and light had no effects on root to shoot ratios, main root to lateral root ratios, and root mass ratios. Shade alleviated the negative impact of drought. A. buergerianum successfully adapted to the various light and water conditions. We recommend a water supply above 15 % FC to keep the seedlings vigorous, under both sunlight conditions.  相似文献   

14.
比较了两种不同攀援习性, 卷须缠绕种薄叶羊蹄甲(Bauhinia tenuiflora)和茎缠绕种刺果藤(Byttneria aspera), 木质藤本植物的形态、生长及光合特性对不同光强(4%、35%和全光照)和土壤养分(高和低)的响应。两种藤本植物大部分表型特征主要受光照的影响, 而受土壤养分的影响较小。弱光促进地上部分生长, 弱光下两种植物均具有较大的比叶面积(specific leaf area, SLA)、茎生物量比(stem mass ratio, SMR)和平均叶面积比(mean leaf area ratio, LARm)。高光强下, 两种植物的总生物量和投入到地下部分的比重增加, 具有更大的根生物量比(root mass ratio, RMR)、更多的分枝数、更高的光合能力( maximum photosynthetic rate, Pmax)和净同化速率(net assimilation rate, NAR), 综合表现为相对生长速率(relative growth rate, RGR)增加。两种藤本植物的Pmax与叶片含氮量的相关性均未达显著水平, 但刺果藤的Pmax与SLA之间呈显著的正相关, 而薄叶羊蹄甲的Pmax与SLA之间相关性不显著。在相同光照强度和土壤养分条件下, 卷须缠绕种薄叶羊蹄甲的RGR显著高于茎缠绕种刺果藤。薄叶羊蹄甲的RGR与NAR呈显著正相关, 其RGR与SLA、平均叶面积比(LARm)及Pmax之间相关性不显著。刺果藤的RGR与NAR呈显著的正相关, 而与SLA存在显著的负相关。上述结果表明, 与土壤养分相比, 光照强度可能是决定木质藤本分布更为重要的生态因子。卷须缠绕种薄叶羊蹄甲由于具有特化的攀援器官, 在形态上和生理上具有更大的可塑性, 这使得卷须缠绕种木质藤本在与其它植物的竞争中更具优势。  相似文献   

15.
A simulated flooding experiment was conducted to evaluate the effects of seasonal flooding on the plant Salix triandroides from the Dongting Lake wetlands in China. The morphology, photosynthetic activity, and anatomy of cuttings in three water conditions (?40 cm, water level 40 cm below soil surface; 0 cm, water level 0 cm at the soil surface; and 40 cm, water level 40 cm above soil surface) and two lights conditions (full sunlight and 10% sunlight) were measured. Plants had a higher survival ratio and biomass accumulation in full sunlight than in 10% sunlight when the water level was ?40 and 0 cm, but there was no difference between these parameters in cuttings grown under the two light conditions in the 40 cm water treatment. In full sunlight, a lower survival ratio and reduced biomass were observed with increasing water level. The same trend was also seen for survival ratio in 10% sunlight. However, there was no difference in biomass among the three water levels in 10% sunlight, except for leaf weight. Branch height, leaf number, adventitious root length, and adventitious root number were different in the three water levels and two light conditions. In water levels of ?40 and 0 cm, plants had lower chlorophyll contents in full sunlight than in 10% sunlight. In full sunlight, there was no difference in chlorophyll content between the water levels, while in 10% sunlight, lower chlorophyll content was observed in ?40 cm than in 0 cm water. Photosynthetic rate, stomatal conductance, and transpiration rate decreased, but water-use efficiency increased in reduced light at all three water levels. Additionally, plants had higher porosity in 40 cm water than in ?40 and 0 cm conditions. Based on the reduced plant growth in the 10% sunlight condition and decreased survival in the 40 cm water level, we conclude that low light significantly decreased plant acclimation to incomplete submergence and that high water levels induced dormancy in the cuttings. Therefore, the height of cuttings used for forestation or reforestation is an important consideration for mitigating the negative effects of seasonal flooding on the survival and growth of S. triandroides in Dongting Lake wetlands.  相似文献   

16.
中国木本植物幼苗生长对光照强度的响应   总被引:4,自引:0,他引:4  
刘从  田甜  李珊  王芳  梁宇 《生态学报》2018,38(2):518-527
光照是影响植物幼苗生长的重要的环境因子,定量化研究光照对木本植物不同生活型幼苗生长的影响具有重要意义。系统收集了有关光照对我国木本植物幼苗生长影响的国内外文献,采用Meta分析的方法对幼苗的生长效应进行评估。研究结果表明:(1)与全光照下幼苗生长相比,由于遮阴处理对幼苗基径增长量的抑制作用强于对株高增长量的作用,幼苗出现株高基面积比增高的形态特征变化;(2)与灌木相比,乔木树种幼苗对不同光照强度的响应更加敏感;(3)在小于20%和20%—40%全光照条件下,落叶阔叶和常绿阔叶树种幼苗基径均受到显著抑制,而常绿针叶树种的基径并没有受到遮阴的明显抑制;(4)落叶阔叶和常绿阔叶树种的株高基面积比均显著高于全光照,而常绿针叶树种的株高基面积比与全光照相比差异较小。我们的这一研究将有助于更好的理解木本植物幼苗生长对光照的响应机理。  相似文献   

17.
The study of plant responses to environmental stress factors is essential for management of plant systems and for anticipating their response to climate change. The main goal of this study was to determine morphological and physiological responses of Nothofagus obliqua and N. nervosa seedlings to light and temperature, two of the main stress factors acting in their current natural distribution in NW Patagonia. Responses to light were evaluated analyzing growth and survival, as well as morphological and physiological traits related to them, in seedlings subjected to three contrasting light conditions (full-sun conditions, 50% of sunlight and 20% of sunlight) during one growth season. Temperature photosynthetic responses were evaluated in seedlings subjected to temperature treatments between ?5 and 40°C for 2 and 4 h. Growth rate and biomass partition were similar between light treatments in both species. High apical meristem damage and decreased photosynthetic capacity of preformed leaves were observed under full-sun conditions, suggesting that high light levels have a deleterious effect on plant yield. Both species produced neoformed leaves during the growing season with better photosynthetic capacity than preformed leaves under full sun conditions, contributing to plant acclimation. Almost no plasticity was observed in morphological traits in response to shade. Both species differed in optimum temperature for photosynthesis, with a wider temperature range at which high photosynthesis is maintained in N. obliqua. In both species the higher values of net photosynthetic rate were found at higher temperatures than the mean annual temperature of its current natural distribution range. Under no water-stress conditions, future higher temperatures could increase carbon fixation of these species, with a little advantage of N. obliqua if temperature variance is high. Synergy effect of various environmental stress factors, particularly considering cultivation of these species outside their current natural distribution sites require further studies.  相似文献   

18.
以当年生盆栽金花茶实生苗为材料,研究不同程度的强光胁迫(25%、50%和100%自然光强,以8%自然光强为对照)对其生长、生物量、叶片光合色素含量、叶绿素荧光参数的影响。结果表明:在不同程度的强光胁迫下,金花茶幼苗的生长均受到抑制,随着胁迫程度的增强,金花茶叶片颜色由深绿变为浅绿、黄绿色,叶片灼伤愈来愈严重;植株抽稍时间推迟,抽稍后长出的新叶长势较差;幼苗死亡率越来越高。幼苗根生物量、茎生物量、叶生物量和总生物量均随胁迫程度的升高而显著降低,强光胁迫对叶生物量的影响最大,根生物量次之,对茎生物量的影响最小。随着胁迫程度的增强,叶片叶绿素总量(Chl)、叶绿素a(Chla)、叶绿素b(Chlb)含量均显著降低,Chla/Chlb和Car/Chl显著升高。叶绿素荧光参数FoFmFvFv/FmFv/Fo均随胁迫程度的升高降低,强光胁迫使PSⅡ受到了伤害,光合作用原初反应过程受抑制,光合电子传递受到影响,从而抑制植株的正常生长。  相似文献   

19.
短命植物是荒漠生态系统中的重要组成部分,发挥着重要的生态功能,对其不同生长阶段形态特征及生物量积累与分配进行研究,有助于深入了解荒漠短命植物的功能特征及生存策略。本研究选取古尔班通古特沙漠2种短命植物——毛穗旱麦草和小花荆芥为对象,通过野外增水30%、50%,分析降水增加对二者不同生长阶段形态、生物量特征的影响。结果表明: 增水30%、50%均促进毛穗旱麦草植株生长,增水处理下叶面积增幅为14.2%~188.5%,繁殖器官生物量最大增幅为55.9%。增水对小花荆芥植株影响存在生长阶段的差异性,展叶期增水对小花荆芥植株生长均有促进作用,而果熟期增水50%小花荆芥叶面积、株高、繁殖器官生物量分别降低54.9%、20.5%、43.2%。两种短命植物对降水增加的响应具有物种特异性,未来降水增加可能会改变二者生存策略,进而对群落组成与结构产生影响。  相似文献   

20.
光是影响种子萌发和幼苗生长的关键因素.为理解不同树种种子萌发及幼苗生长对光梯度变化的响应机制,本文研究了不同光照强度(分别为自然光强的100%、60%、40%、15%和5%)对杉木和木荷种子萌发及幼苗生长的影响,探讨了两树种种子萌发和幼苗生长对光照响应的差异性.结果表明: 光照强度对两树种的种子萌发和幼苗生长均具有显著影响. 随着光照强度的减弱, 杉木种子萌发率增大,萌发指数增大,木荷种子萌发率和萌发指数则先增大后减小,在40%光照强度下达到最大值.两树种幼苗存活率在全光照(100%光照)下均为0,在5%~60%光照处理下则随着光照强度的减弱而显著降低.两树种幼苗根长、地径和株高对光梯度变化的响应趋势一致,随着光照强度的减弱,根长显著减小,地径和株高则先增大后减小,在5%光照强度下达到最小.随着光照强度的减弱,杉木幼苗根、茎、叶及总生物量降低,木荷幼苗生物量积累在15%~60%光照强度下较高, 5%光照强度下最小,且相同光照强度下,木荷幼苗各部分生物量均大于杉木.两树种幼苗应对低光环境时,表现出较大的茎和叶的生物量分配比,而根生物量比和根冠比降低.表明杉木苗期生长不耐阴,需要相对较强的光照,而木荷苗期具有较强的耐阴性,对弱光环境的适应性更强,能够在郁闭的林冠下定植和正常生长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号