首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fusion of intracellular membranes is driven by the formation of a highly stable four-helix bundle of SNARE proteins embedded in the vesicle and target membranes. N-Ethylmaleimide sensitive factor recycles SNAREs after fusion by binding to the SNARE complex through an adaptor protein, αSNAP, and using the energy of ATP hydrolysis to disassemble the complex. Although only a single molecule of αSNAP binds to a soluble form of the SNARE complex, we find that three molecules of αSNAP are used for SNARE complex disassembly. We describe an engineered αSNAP trimer that supports more efficient SNARE complex disassembly than monomeric αSNAP. Using the trimerized αSNAP, we find that N-ethylmaleimide-sensitive factor hydrolyzes 10 ATP molecules on average to disassemble a single SNARE complex.  相似文献   

2.
Cysteine string protein-α (CSP-α) is a synaptic vesicle protein that prevents activity-dependent neurodegeneration by poorly understood mechanisms. We have studied the synaptic vesicle cycle at the motor nerve terminals of CSP-α knock-out mice expressing the synaptopHluorin transgene. Mutant nerve terminals fail to sustain prolonged release and the number of vesicles available to be released decreases. Strikingly, the SNARE protein SNAP-25 is dramatically reduced. In addition, endocytosis during the stimulus fails to maintain the size of the recycling synaptic vesicle pool during prolonged stimulation. Upon depolarization, the styryl dye FM?2-10 becomes trapped and poorly releasable. Consistently with the functional results, electron microscopy analysis revealed characteristic features of impaired synaptic vesicle recycling. The unexpected defect in vesicle recycling in CSP-α knock-out mice provides insights into understanding molecular mechanisms of degeneration in motor nerve terminals.  相似文献   

3.
Vesicle trafficking in eukaryotic cells is facilitated by SNARE-mediated membrane fusion. The ATPase NSF (N-ethylmaleimide-sensitive factor) and the adaptor protein α-SNAP (soluble NSF attachment protein) disassemble all SNARE complexes formed throughout different pathways, but the effect of SNARE sequence and domain variation on the poorly understood disassembly mechanism is unknown. By measuring SNARE-stimulated ATP hydrolysis rates, Michaelis-Menten constants for disassembly, and SNAP-SNARE binding constants for four different ternary SNARE complexes and one binary complex, we found a conserved mechanism, not influenced by N-terminal SNARE domains. α-SNAP and the ternary SNARE complex form a 1:1 complex as revealed by multiangle light scattering. We propose a model of NSF-mediated disassembly in which the reaction is initiated by a 1:1 interaction between α-SNAP and the ternary SNARE complex, followed by NSF binding. Subsequent additional α-SNAP binding events may occur as part of a processive disassembly mechanism.  相似文献   

4.
5.
Cerebral deposition of amyloid β protein (Aβ) is an invariant feature of Alzheimer disease (AD), and epidemiological evidence suggests that moderate consumption of foods enriched with phenolic compounds reduce the incidence of AD. We reported previously that the phenolic compounds myricetin (Myr) and rosmarinic acid (RA) inhibited Aβ aggregation in vitro and in vivo. To elucidate a mechanistic basis for these results, we analyzed the effects of five phenolic compounds in the Aβ aggregation process and in oligomer-induced synaptic toxicities. We now report that the phenolic compounds blocked Aβ oligomerization, and Myr promoted significant NMR chemical shift changes of monomeric Aβ. Both Myr and RA reduced cellular toxicity and synaptic dysfunction of the Aβ oligomers. These results suggest that Myr and RA may play key roles in blocking the toxicity and early assembly processes associated with Aβ through different binding.  相似文献   

6.
The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein–protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners, whereas KSs showed promiscuous behavior across bacterial, plant, and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic cross-linking, and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.  相似文献   

7.
Extensive applications of persistent organochlorine pesticides like endosulfan on cotton have led to the contamination of soil and water environments at several sites in Pakistan. Microbial degradation offers an effective approach to remove such toxicants from the environment. This study reports the isolation of highly efficient endosulfan degrading bacterial strains from soil. A total of 29 bacterial strains were isolated through enrichment technique from 15 specific sites using endosulfan as sole sulfur source. The strains differed substantially in their potential to degrade endosulfan in vitro ranging from 40 to 93% of the spiked amount (100 mg l−1). During the initial 3 days of incubation, there was very little degradation but it got accelerated as the incubation period proceeded. Biodegradation of endosulfan by these bacteria also resulted in substantial decrease in pH of the broth from 8.2 to 3.7 within 14 days of incubation. The utilization of endosulfan was accompanied by increased optical densities (OD595) of the broth ranging from 0.511 to 0.890. High performance liquid chromatography analyses revealed that endosulfan diol and endosulfan ether were among the products of endosulfan metabolism by these bacterial strains while endosulfan sulfate, a persistent and toxic metabolite of endosulfan, was not detected in any case. The presence of endosulfan diol and endosulfan ether in the bacterial metabolites was further confirmed by GC-MS. Abiotic degradation contributed up to 21% of the spiked amount. The three bacterial strains, Pseudomonas spinosa, P. aeruginosa, and Burkholderia cepacia, were the most efficient degraders of both α- and β-endosulfan as they consumed more than 90% of the spiked amount (100 mg l−1) in the broth within 14 days of incubation. Maximum biodegradation by these three selected efficient bacterial strains was observed at an initial pH of 8.0 and at an incubation temperature of 30°C. The results of this study may imply that these bacterial strains could be employed for bioremediation of endosulfan polluted soil and water environments.  相似文献   

8.
Lević J  Petrović T 《Mycopathologia》1997,140(3):149-155
The formation of conidia in Phaeocytostroma ambiguum on different media and conditions was investigated in this study. Carnation leaf agar (CLA) and a 12 h photoperiod (24/18 °C) provided excellent conditions for the promotion of rapid formation of both alpha (α) and beta (β) conidia in a number of P. ambiguum isolates. The dimensions of α- and β-conidia amounted to 6.0–19.6 × 3.8–7.5 μm and 6.0–24.9 × 1.1–2.6 μm, respectively. They were produced on short or elongate, simple and branched conidiophores. β-conidia have not been described before in P. ambiguum. Intermediate conidia were rarely found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Dai J  Ji C  Gu S  Wu Q  Wang L  Xu J  Zeng L  Ye X  Yin G  Xie Y  Mao Y 《Molecular biology reports》2003,30(3):185-191
Synaptoporin is a membrane protein of synaptic vesicles, which belongs to the synaptophysin family. It was first isolated from rat brain. Here we report the cloning and characterization of the human cDNA that encodes the human homologue of synaptoporin. It has two splicing variants, which is in accordance with its ortholog in chicken. Its deduced amino acid sequence displays 97% and 81% identity with the synaptoporin of rat and chicken, respectively. This gene was mapped to the chromosome 3p14.3 by matching against the Human Genome Sequence Database. 16-tissue RT-PCR analysis shows that human synaptoporin is specifically expressed in the brain.  相似文献   

10.
Production of -amylase by a strain of Bacillus amyloliquefaciens was investigated in a cell recycle bioreactor incorporating a membrane filtration module for cell separation. Experimental fermentation studies with the B. amyloliquefaciens strain WA-4 clearly showed that incorporating cell recycling increased -amylase yield and volumetric productivity as compared to conventional continuous fermentation. The effect of operating conditions on -amylase production was difficult to demonstrate experimentally due to the problems of keeping the permeate and bleed rates constant over an extended period of time. Computer simulations were therefore undertaken to support the experimental data, as well as to elucidate the dynamics of -amylase production in the cell recycle bioreactor as compared to conventional chemostat and batch fermentations. Taken together, the simulations and experiments clearly showed that low bleed rate (high recycling ratio) various a high level of -amylase activity. The simulated fermentations revealed that this was especially pronounced at high recycling ratios. Volumetric productivity was maximum at a dilution rate of around 0.4 h–1 and a high recycling ratio. The latter had to exceed 0.75 before volumetric productivity was significantly greater than with conventional chemostat fermentation.List of Symbols a proportionality constant relating the specific growth rate to the logarithm of G (h) - a 1 reaction order with respect to starch concentration - a 2 reaction order with respect to glucose concentration - B bleed rate (h–1) - C starch concentration (g/l) - C 0 starch concentration in the feed (g/l) - D dilution rate (h–1) - D E volumetric productivity (KNU/(mlh)) - e intracellular -amylase concentration (g/g cell mass) - E extracellular -amylase concentration (KNU/ml) - F volumetric flow rate (l/h) - G average number of genome equivalents of DNA per cell - k l intracellular equilibrium constant - k 2 intracellular equilibrium constant - k s Monod saturation constant (g/l) - k 3 excretion rate constant (h–1) - k d first order decay constant (h–1) - k gl rate constant for glucose production - k st rate constant for starch hydrolysis - k t1 proportionality constant for -amylase production (gmRNA/g substrate) - k 1 translation constant (g/(g mRNAh)) - KNU kilo Novo unit - m maintenance coefficient (g substrate/(g cell massh)) - n number of binding sites for the co-repressor on the cytoplasmic repressor - Q repression function K1/K2Q1.0 - R ratio of recycling - R s rate of glucose production (g/lh) - r c rate of starch hydrolysis (g/(lh)) - R eX retention by the filter of the compounds X: starch or -amylase - r intracellular -amylase mRNA concentration (g/g cell mass) - r C volumetric productivity of starch (g/lh) - r E volumetric productivity of intracellular -amylase (KNU/(g cell massh)) - r r volumetric productivity of intracellular mRNA (g/(g cell massh)) - r e volumetric productivity of extracellular -amylase (KNU/(mlh)) - r s volumetric productivity of glucose (g/(lh)) - r X volumetric productivity of cell mass (g/(lh)) - S 0 free reducing sugar concentration in the feed (g/l) - S extracellular concentration of reducing sugar (g/1) - t time (h) - V volume (l) - X cell mass concentration (g/l) - Y yield coefficient (g cell mass/g substrate) - Y E/S yield coefficient (KNU -amylase/g substrate) - Y E total amount of -amylase produced (KNU) - substrate uptake (g substrate/(g cell massh)) - specific growth rate of cell mass (h–1) - d specific death rate of cells (h–1) - m maximum specific growth rate of cell mass (h–1) This study was supported by Bioprocess Engineering Programme of the Nordic Industrial Foundation and the Center for Process Biotechnology, the Technical University of Denmark.  相似文献   

11.
Among 2,3-epoxypropyl α-d-glucopyranoside and 2,3-epoxypropyl α-maltooligosaccharides and the β-anomers, 2,3-epoxypropyl α-d-glucopyranoside (α-EPG) strongly inactivated the β-amylases [EC 3.2.1.2] of sweet potato, barley, and Bacillus, cereus, in addition to soybean β amylase [J. Biochem., 99, 1631 (1986)]. However, none of the compounds used inactivated any α-amylases [EC 3.2.1.1] of porcine pancreas, Aspergillus oryzae, or Bacillus amyloliquefaciens. Irreversible incorporation of 14C-labeled α-EPG into β-amylases was stoichiometric, i.e., one α-EPG per active site of the enzyme was bound, and the inactivations were almost complete. The results suggest that α-EPG is an affinity labeling reagent selective for β-amylase. Slow inactivations by the other compounds were also observed, depending on the difference of source of β amylase.  相似文献   

12.
The 2013 Nobel Prize in Physiology or Medicine honors three scientists,James Rothman,Randy Schekman and Thomas Südhof,whose work revealed the mystery of the vesicle trafficking,i.e.,how cells,from yeast to mammals,organize their transport systems.In a neuroscience perspective,this decades-long story might be described as a legend  相似文献   

13.
Abstract Thermodynamic aspects of protein stabilization by two widespread naturally occurring osmolytes, β-hydroxyectoine and betaine, were studied using differential scanning calorimetry (DSC) and bovine ribonuclease A (RNase A) as a model protein. The osmolyte β-hydroxyectoine purified from Marinococcus was found to be a very efficient stabilizer. At a concentration of 3 M it increased the melting temperature of RNase A (T m ) by more than 12 K and gave rise to a stability increase of 10.6 kJ/mol at room temperature. The heat capacity difference between the folded and unfolded state (ΔC p ) was found to be significantly increased. Betaine stabilized RNase A only at concentrations less than 3 M. Also, here ΔC p was found to be increased. Calculation of the number of water molecules that additionally bind to unfolded RNase A resulted in surprisingly low numbers for both osmolytes. The significant stabilization of RNase A by β-hydroxyectoine makes this osmolyte an interesting stabilizer in biotechnological processes in which enzymes are applied in the presence of denaturants or at high temperature. Received: November 16, 1998 / Accepted: March 18, 1999  相似文献   

14.
We developed “fractionation profiling,” a method for rapid proteomic analysis of membrane vesicles and protein particles. The approach combines quantitative proteomics with subcellular fractionation to generate signature protein abundance distribution profiles. Functionally associated groups of proteins are revealed through cluster analysis. To validate the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin-coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins from Drosophila S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse range of known and novel cytosolic and membrane-associated protein complexes. We show that it also allows the detailed compositional characterization of complexes, including the delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an interactive database. Fractionation profiling is a universal method for defining the clathrin-coated vesicle proteome and may be adapted for the analysis of other types of vesicles and particles. In addition, it provides a versatile tool for the rapid generation of large-scale protein interaction maps.  相似文献   

15.
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.  相似文献   

16.
Aggregated α-synuclein (α-syn) is a characteristic pathological finding in Parkinson's disease and related disorders, such as dementia with Lewy bodies. Recent evidence suggests that α-syn oligomers represent the principal neurotoxic species; however, the pathophysiological mechanisms are still not well understood. Here, we studied the neurophysiological effects of various biophysically-characterized preparations of α-syn aggregates on excitatory synaptic transmission in autaptic neuronal cultures. Nanomolar concentrations of large α-syn oligomers, generated by incubation with organic solvent and Fe(3+) ions, were found to selectivity enhance evoked α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor, but not NMDA-receptor, mediated synaptic transmission within minutes. Moreover, the analysis of spontaneous AMPA-receptor-mediated miniature synaptic currents revealed an augmented frequency. These results collectively indicate that large α-syn oligomers alter both pre- and post-synaptic mechanisms of AMPA-receptor-mediated synaptic transmission. The augmented excitatory synaptic transmission may directly contribute to nerve cell death in synucleinopathies. Indeed, already low micromolar glutamate concentrations were found to be toxic in primary cultured neurons incubated with large α-syn oligomers. In conclusion, large α-syn oligomers enhance both pre- and post-synaptic AMPA-receptor-mediated synaptic transmission, thereby aggravating intracellular calcium dyshomeostasis and contributing to excitotoxic nerve cell death in synucleinopathies.  相似文献   

17.
18.
Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex.  相似文献   

19.
Shen Q  Liu Z  Song F  Xie Q  Hanley-Bowdoin L  Zhou X 《Plant physiology》2011,157(3):1394-1406
The βC1 protein of tomato yellow leaf curl China β-satellite functions as a pathogenicity determinant. To better understand the molecular basis of βC1 in pathogenicity, a yeast two-hybrid screen of a tomato (Solanum lycopersicum) cDNA library was carried out using βC1 as bait. βC1 interacted with a tomato SUCROSE-NONFERMENTING1-related kinase designated as SlSnRK1. Their interaction was confirmed using a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Plants overexpressing SnRK1 were delayed for symptom appearance and contained lower levels of viral and satellite DNA, while plants silenced for SnRK1 expression developed symptoms earlier and accumulated higher levels of viral DNA. In vitro kinase assays showed that βC1 is phosphorylated by SlSnRK1 mainly on serine at position 33 and threonine at position 78. Plants infected with βC1 mutants containing phosphorylation-mimic aspartate residues in place of serine-33 and/or threonine-78 displayed delayed and attenuated symptoms and accumulated lower levels of viral DNA, while plants infected with phosphorylation-negative alanine mutants contained higher levels of viral DNA. These results suggested that the SlSnRK1 protein attenuates geminivirus infection by interacting with and phosphorylating the βC1 protein.  相似文献   

20.
Cell migration is dependent on a series of integrated cellular events including the membrane recycling of the extracellular matrix receptor integrins. In this paper, we investigate the role of autophagy in regulating cell migration. In a wound-healing assay, we observed that autophagy was reduced in cells at the leading edge than in cells located rearward. These differences in autophagy were correlated with the robustness of MTOR activity. The spatial difference in the accumulation of autophagic structures was not detected in rapamycin-treated cells, which had less migration capacity than untreated cells. In contrast, the knockdown of the autophagic protein ATG7 stimulated cell migration of HeLa cells. Accordingly, atg3?/? and atg5?/? MEFs have greater cell migration properties than their wild-type counterparts. Stimulation of autophagy increased the co-localization of β1 integrin-containing vesicles with LC3-stained autophagic vacuoles. Moreover, inhibition of autophagy slowed down the lysosomal degradation of internalized β1 integrins and promoted its membrane recycling. From these findings, we conclude that autophagy regulates cell migration, a central mechanism in cell development, angiogenesis, and tumor progression, by mitigating the cell surface expression of β1 integrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号