首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-cell optogenetic excitation drives homeostatic synaptic depression   总被引:1,自引:0,他引:1  
Goold CP  Nicoll RA 《Neuron》2010,68(3):512-528
Homeostatic processes have been proposed to explain the discrepancy between the dynamics of synaptic plasticity and the stability of brain function. Forms of synaptic plasticity such as long-term potentiation alter synaptic activity in a synapse- and cell-specific fashion. Although network-wide excitation triggers compensatory homeostatic changes, it is unknown whether neurons initiate homeostatic synaptic changes in response to cell-autonomous increases in excitation. Here we employ optogenetic tools to cell-autonomously excite CA1 pyramidal neurons and find that a compensatory postsynaptic depression of both AMPAR and NMDAR function results. Elevated calcium influx through L-type calcium channels leads to activation of a pathway involving CaM kinase kinase and CaM kinase 4 that induces synaptic depression of AMPAR and NMDAR responses. The synaptic depression of AMPARs but not of NMDARs requires protein synthesis and the GluA2 AMPAR subunit, indicating that downstream of CaM kinase activation divergent pathways regulate homeostatic AMPAR and NMDAR depression.  相似文献   

2.
Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.  相似文献   

3.
Aoto J  Nam CI  Poon MM  Ting P  Chen L 《Neuron》2008,60(2):308-320
  相似文献   

4.
Neurons employ a set of homeostatic plasticity mechanisms to counterbalance altered levels of network activity. The molecular mechanisms underlying homeostatic plasticity in response to increased network excitability are still poorly understood. Here, we describe a sequential homeostatic synaptic depression mechanism in primary hippocampal neurons involving miRNA‐dependent translational regulation. This mechanism consists of an initial phase of synapse elimination followed by a reinforcing phase of synaptic downscaling. The activity‐regulated microRNA miR‐134 is necessary for both synapse elimination and the structural rearrangements leading to synaptic downscaling. Results from miR‐134 inhibition further uncover a differential requirement for GluA1/2 subunits for the functional expression of homeostatic synaptic depression. Downregulation of the miR‐134 target Pumilio‐2 in response to chronic activity, which selectively occurs in the synapto‐dendritic compartment, is required for miR‐134‐mediated homeostatic synaptic depression. We further identified polo‐like kinase 2 (Plk2) as a novel target of Pumilio‐2 involved in the control of GluA2 surface expression. In summary, we have described a novel pathway of homeostatic plasticity that stabilizes neuronal circuits in response to increased network activity.  相似文献   

5.
Chronic changes in activity can induce neurons to alter the strength of all their synapses in unison. Although the specific changes that occur appear to vary depending on the experimental preparation, their net effect is to counter the experimentally induced modification of activity. Such adaptive, cell-wide changes in synaptic strength serve to stabilize neuronal activity and are collectively referred to as homeostatic synaptic plasticity. Recent studies have shed light on what triggers homeostatic synaptic plasticity, whether or not it is distinct from other forms of synaptic plasticity and whether or not it occurs in the intact brain.  相似文献   

6.
Neural circuits must maintain stable function in the face of many plastic challenges, including changes in synapse number and strength, during learning and development. Recent work has shown that these destabilizing influences are counterbalanced by homeostatic plasticity mechanisms that act to stabilize neuronal and circuit activity. One such mechanism is synaptic scaling, which allows neurons to detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms may allow local changes in synaptic activation to generate local synaptic adaptations, and network-wide changes in activity to generate network-wide adjustments in the balance between excitation and inhibition. The signaling pathways underlying these various forms of homeostatic plasticity are currently under intense scrutiny, and although dozens of molecular pathways have now been implicated in homeostatic plasticity, a clear picture of how homeostatic feedback is structured at the molecular level has not yet emerged. On a functional level, neuronal networks likely use this complex set of regulatory mechanisms to achieve homeostasis over a wide range of temporal and spatial scales.  相似文献   

7.
Homeostatic synaptic plasticity is thought to have a crucial role in stabilizing the activity of neurons and networks, but the mechanisms are poorly understood. In a recent study, Stellwagen and Malenka have shown that synaptic scaling can be induced by activity-dependent changes in release of the cytokine tumor necrosis factor-alpha (TNF-alpha) and, surprisingly, that the source of TNF-alpha is glia rather than neurons. In addition to provide insight into the mechanisms of homeostatic plasticity, these data argue for the first time for an equal partnership between glial cells and neurons in the generation of an important form of synaptic plasticity.  相似文献   

8.
Hou Q  Gilbert J  Man HY 《Neuron》2011,72(5):806-818
During homeostatic adjustment in response to alterations in neuronal activity, synaptic expression of AMPA receptors (AMPARs) is globally tuned up or down so that the neuronal activity is restored to a physiological range. Given that a central neuron receives multiple presynaptic inputs, whether and how AMPAR synaptic expression is homeostatically regulated at individual synapses remain unclear. In cultured hippocampal neurons we report that when activity of an individual presynaptic terminal is selectively elevated by light-controlled excitation, AMPAR abundance at the excited synapses is selectively downregulated in an NMDAR-dependent manner. The reduction in surface AMPARs is accompanied by enhanced receptor endocytosis and dependent on proteasomal activity. Synaptic activation also leads to a site-specific increase in the ubiquitin ligase Nedd4 and polyubiquitination levels, consistent with?AMPAR ubiquitination and degradation in the spine. These results indicate that AMPAR accumulation at individual synapses is subject to autonomous homeostatic regulation in response to synaptic activity.  相似文献   

9.
Sutton MA  Ito HT  Cressy P  Kempf C  Woo JC  Schuman EM 《Cell》2006,125(4):785-799
Activity deprivation in neurons induces a slow compensatory scaling up of synaptic strength, reflecting a homeostatic mechanism for stabilizing neuronal activity. Prior studies have focused on the loss of action potential (AP) driven neurotransmission in synaptic homeostasis. Here, we show that the miniature synaptic transmission that persists during AP blockade profoundly shapes the time course and mechanism of homeostatic scaling. A brief blockade of NMDA receptor (NMDAR) mediated miniature synaptic events ("minis") rapidly scales up synaptic strength, over an order of magnitude faster than with AP blockade alone. The rapid scaling induced by NMDAR mini blockade is mediated by increased synaptic expression of surface GluR1 and the transient incorporation of Ca2+-permeable AMPA receptors at synapses; both of these changes are implemented locally within dendrites and require dendritic protein synthesis. These results indicate that NMDAR signaling during miniature synaptic transmission serves to stabilize synaptic function through active suppression of dendritic protein synthesis.  相似文献   

10.
Recent experimental results by Talathi et al. (Neurosci Lett 455:145–149, 2009) showed a divergence in the spike rates of two types of population spike events, representing the putative activity of the excitatory and inhibitory neurons in the CA1 area of an animal model for temporal lobe epilepsy. The divergence in the spike rate was accompanied by a shift in the phase of oscillations between these spike rates leading to a spontaneous epileptic seizure. In this study, we propose a model of homeostatic synaptic plasticity which assumes that the target spike rate of populations of excitatory and inhibitory neurons in the brain is a function of the phase difference between the excitatory and inhibitory spike rates. With this model of homeostatic synaptic plasticity, we are able to simulate the spike rate dynamics seen experimentally by Talathi et al. in a large network of interacting excitatory and inhibitory neurons using two different spiking neuron models. A drift analysis of the spike rates resulting from the homeostatic synaptic plasticity update rule allowed us to determine the type of synapse that may be primarily involved in the spike rate imbalance in the experimental observation by Talathi et al. We find excitatory neurons, particularly those in which the excitatory neuron is presynaptic, have the most influence in producing the diverging spike rates and causing the spike rates to be anti-phase. Our analysis suggests that the excitatory neuronal population, more specifically the excitatory to excitatory synaptic connections, could be implicated in a methodology designed to control epileptic seizures.  相似文献   

11.
In neurons, control of microtubule dynamics is required for multiple homeostatic and regulated activities. Over the past few decades, a great deal has been learned about the role of the microtubule cytoskeleton in axonal and dendritic transport, with a broad impact on neuronal health and disease. However, significantly less attention has been paid to the importance of microtubule dynamics in directly regulating synaptic function. Here, we review emerging literature demonstrating that microtubules enter synapses and control central aspects of synaptic activity, including neurotransmitter release and synaptic plasticity. The pleiotropic effects caused by a dysfunctional synaptic microtubule cytoskeleton may thus represent a key point of vulnerability for neurons and a primary driver of neurological disease.  相似文献   

12.
Neurons deep in cortex interact with the environment extremely indirectly; the spikes they receive and produce are pre- and post-processed by millions of other neurons. This paper proposes two information-theoretic constraints guiding the production of spikes, that help ensure bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons should emphasize selective responses with bursts. Second, neurons should propagate selective inputs by burst-firing in response to them. We show the constraints are necessary for bursts to dominate information-transfer within cortex, thereby providing a substrate allowing neurons to distribute credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best performed offline during sleep.  相似文献   

13.
The self-tuning neuron: synaptic scaling of excitatory synapses   总被引:1,自引:0,他引:1  
Turrigiano GG 《Cell》2008,135(3):422-435
Homeostatic synaptic scaling is a form of synaptic plasticity that adjusts the strength of all of a neuron's excitatory synapses up or down to stabilize firing. Current evidence suggests that neurons detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional mechanisms may allow local or network-wide changes in activity to be sensed through parallel pathways, generating a nested set of homeostatic mechanisms that operate over different temporal and spatial scales.  相似文献   

14.
NMDA receptors are calcium-permeable ionotropic receptors that detect coincident glutamate binding and membrane depolarization and are essential for many forms of synaptic plasticity in the mammalian brain. The obligatory GluN1 subunit of NMDA receptors is alternatively spliced at multiple sites, generating forms that vary in N-terminal N1 and C-terminal C1, C2, and C2' cassettes. Based on expression of GluN1 constructs in heterologous cells and in wild type neurons, the prevalent view is that the C-terminal cassettes regulate synaptic accumulation and its modulation by homeostatic activity blockade and by protein kinase C (PKC). Here, we tested the role of GluN1 splicing in regulated synaptic accumulation of NMDA receptors by lentiviral expression of individual GluN1 splice variants in hippocampal neurons cultured from GluN1 (-/-) mice. High efficiency transduction of GluN1 at levels similar to endogenous was achieved. Under control conditions, the C2' cassette mediated enhanced synaptic accumulation relative to the alternate C2 cassette, whereas the presence or absence of N1 or C1 had no effect. Surprisingly all GluN1 splice variants showed >2-fold increased synaptic accumulation with chronic blockade of NMDA receptor activity. Furthermore, in this neuronal rescue system, all GluN1 splice variants were equally rapidly dispersed upon activation of PKC. These results indicate that the major mechanisms mediating homeostatic synaptic accumulation and PKC dispersal of NMDA receptors occur independently of GluN1 splice isoform.  相似文献   

15.
Gaseous neurotransmitters such as nitric oxide (NO) provide a unique and often overlooked mechanism for neurons to communicate through diffusion within a network, independent of synaptic connectivity. NO provides homeostatic control of intrinsic excitability. Here we conduct a theoretical investigation of the distinguishing roles of NO-mediated diffusive homeostasis in comparison with canonical non-diffusive homeostasis in cortical networks. We find that both forms of homeostasis provide a robust mechanism for maintaining stable activity following perturbations. However, the resulting networks differ, with diffusive homeostasis maintaining substantial heterogeneity in activity levels of individual neurons, a feature disrupted in networks with non-diffusive homeostasis. This results in networks capable of representing input heterogeneity, and linearly responding over a broader range of inputs than those undergoing non-diffusive homeostasis. We further show that these properties are preserved when homeostatic and Hebbian plasticity are combined. These results suggest a mechanism for dynamically maintaining neural heterogeneity, and expose computational advantages of non-local homeostatic processes.  相似文献   

16.
Homeostatic plasticity keeps neuronal spiking output within an optimal range in the face of chronically altered levels of network activity. Little is known about the underlying molecular mechanisms, particularly in response to elevated activity. We report that, in hippocampal neurons experiencing heightened activity, the activity-inducible protein kinase Polo-like kinase 2 (Plk2, also known as SNK) was required for synaptic scaling-a principal mechanism underlying homeostatic plasticity. Synaptic scaling also required CDK5, which acted as a "priming" kinase for the phospho-dependent binding of Plk2 to its substrate SPAR, a postsynaptic RapGAP and scaffolding molecule that is degraded following phosphorylation by Plk2. RNAi knockdown of SPAR weakened synapses, and overexpression of a SPAR mutant resistant to Plk2-dependent degradation prevented synaptic scaling. Thus, priming phosphorylation of the Plk2 binding site in SPAR by CDK5, followed by Plk2 recruitment and SPAR phosphorylation-degradation, constitutes a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity.  相似文献   

17.
Homeostatic synaptic plasticity is important for maintaining stability of neuronal function, but heterogeneous expression mechanisms suggest that distinct facets of neuronal activity may shape the manner in which compensatory synaptic changes are implemented. Here, we demonstrate that local presynaptic activity gates a retrograde form of homeostatic plasticity induced by blockade of AMPA receptors (AMPARs) in cultured hippocampal neurons. We show that AMPAR blockade produces rapid (<3 hr) protein synthesis-dependent increases in both presynaptic and postsynaptic function and that the induction of presynaptic, but not postsynaptic, changes requires coincident local activity in presynaptic terminals. This "state-dependent" modulation of presynaptic function requires postsynaptic release of brain-derived neurotrophic factor (BDNF) as a retrograde messenger, which is locally synthesized in dendrites in response to AMPAR blockade. Taken together, our results reveal a local crosstalk between active presynaptic terminals and postsynaptic signaling that dictates the manner by which homeostatic plasticity is implemented at synapses.  相似文献   

18.
Homeostatic synaptic scaling is regulated by protein SUMOylation   总被引:1,自引:0,他引:1  
Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.  相似文献   

19.
As the nervous system develops, there is an inherent variability in the connections formed between differentiating neurons. Despite this variability, neural circuits form that are functional and remarkably robust. One way in which neurons deal with variability in their inputs is through compensatory, homeostatic changes in their electrical properties. Here, we show that neurons also make compensatory adjustments to their structure. We analysed the development of dendrites on an identified central neuron (aCC) in the late Drosophila embryo at the stage when it receives its first connections and first becomes electrically active. At the same time, we charted the distribution of presynaptic sites on the developing postsynaptic arbor. Genetic manipulations of the presynaptic partners demonstrate that the postsynaptic dendritic arbor adjusts its growth to compensate for changes in the activity and density of synaptic sites. Blocking the synthesis or evoked release of presynaptic neurotransmitter results in greater dendritic extension. Conversely, an increase in the density of presynaptic release sites induces a reduction in the extent of the dendritic arbor. These growth adjustments occur locally in the arbor and are the result of the promotion or inhibition of growth of neurites in the proximity of presynaptic sites. We provide evidence that suggest a role for the postsynaptic activity state of protein kinase A in mediating this structural adjustment, which modifies dendritic growth in response to synaptic activity. These findings suggest that the dendritic arbor, at least during early stages of connectivity, behaves as a homeostatic device that adjusts its size and geometry to the level and the distribution of input received. The growing arbor thus counterbalances naturally occurring variations in synaptic density and activity so as to ensure that an appropriate level of input is achieved.  相似文献   

20.
Kim J  Tsien RW 《Neuron》2008,58(6):925-937
Synaptic homeostasis, induced by chronic changes in neuronal activity, is well studied in cultured neurons, but not in more physiological networks where distinct synaptic circuits are preserved. We characterized inactivity-induced adaptations at three sets of excitatory synapses in tetrodotoxin-treated organotypic hippocampal cultures. The adaptation to inactivity was strikingly synapse specific. Hippocampal throughput synapses (dentate-to-CA3 and CA3-to-CA1) were upregulated, conforming to homeostatic gain control in order to avoid extreme limits of neuronal firing. However, chronic inactivity decreased mEPSC frequency at CA3-to-CA3 synapses, which were isolated pharmacologically or surgically. This downregulation of recurrent synapses was opposite to that expected for conventional homeostasis, in apparent conflict with typical gain control. However, such changes contributed to an inactivity-induced shortening of reverberatory bursts generated by feedback excitation among CA3 pyramids, safeguarding the network from possible runaway excitation. Thus, synapse-specific adaptations of synaptic weight not only contributed to homeostatic gain control, but also dampened epileptogenic network activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号