首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavioural variation among human societies is vast and unmatched in the animal world. It is unclear whether this variation is due to variation in the ecological environment or to differences in cultural traditions. Underlying this debate is a more fundamental question: is the richness of humans’ behavioural repertoire due to non-cultural mechanisms, such as causal reasoning, inventiveness, reaction norms, trial-and-error learning and evoked culture, or is it due to the population-level dynamics of cultural transmission? Here, we measure the relative contribution of environment and cultural history in explaining the behavioural variation of 172 Native American tribes at the time of European contact. We find that the effect of cultural history is typically larger than that of environment. Behaviours also persist over millennia within cultural lineages. This indicates that human behaviour is not predominantly determined by single-generation adaptive responses, contra theories that emphasize non-cultural mechanisms as determinants of human behaviour. Rather, the main mode of human adaptation is social learning mechanisms that operate over multiple generations.  相似文献   

2.
We develop a conceptual framework for the understanding of animal personalities in terms of adaptive evolution. We focus on two basic questions. First, why do behavioural types exhibit limited behavioural plasticity, that is, behavioural correlations both across contexts and over time? Second, how can multiple behavioural types coexist within a single population? We emphasize differences in 'state' among individuals in combination with state-dependent behaviour. Some states are inherently stable and individual differences in such states can explain stable differences in suites of behaviour if it is adaptive to make behaviour in various contexts dependent on such states. Behavioural stability and cross-context correlations in behaviour are more difficult to explain if individual states are potentially more variable. In such cases stable personalities can result from state-dependent behaviour if state and behaviour mutually reinforce each other by feedback mechanisms. We discuss various evolutionary mechanisms for the maintenance of variation (in states and/or behaviour), including frequency-dependent selection, spatial variation with incomplete matching between habitat and phenotype, bet-hedging in a temporally fluctuating environment, and non-equilibrium dynamics. Although state differences are important, we also discuss how social conventions and social signalling can give rise to adaptive personality differences in the absence of state differences.  相似文献   

3.
Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture.  相似文献   

4.
Anthropological evidence from diverse societies suggests that prestige-based leadership may provide a foundation for cooperation in many contexts. Here, inspired by such ethnographic observations and building on a foundation of existing research on the evolution of prestige, we develop a set of formal models to explore when an evolved prestige psychology might drive the cultural evolution of n-person cooperation, and how such a cultural evolutionary process might create novel selection pressures for genes that make prestigious individuals more prosocial. Our results reveal (i) how prestige can foster the cultural emergence of cooperation by generating correlated behavioural phenotypes, both between leaders and followers, and among followers; (ii) why, in the wake of cultural evolution, natural selection favours genes that make prestigious leaders more prosocial, but only when groups are relatively small; and (iii), why the effectiveness of status differences in generating cooperation in large groups depends on cultural transmission (and not primarily on deference or coercion). Our theoretical framework, and the specific predictions made by these models, sketch out an interdisciplinary research programme that cross-cuts anthropology, biology, psychology and economics. Some of our predictions find support from laboratory work in behavioural economics and are consistent with several real-world patterns.  相似文献   

5.
The aim of this review is to consider variation in mating p among females. We define mating p as the sensory and behavioural properties that influence the propensity of individuals to mate with certain phenotypes. Two properties of mating p can be distinguished: (i) ‘preference functions’–the order with which an individual ranks prospective mates and (2)‘choosiness’ -the effort an individual is prepared to invest in mate assessment. Patterns of mate choices can be altered by changing the costs of choosiness without altering the preference function. We discuss why it is important to study variation in female mating behaviour and identify five main areas of interest: Variation in mating p and costs of choosiness could (i) influence the rate and direction of evolution by sexual selection, (2) provide information about the evolutionary history of female p, (3) help explain inter-specific differences in the evolution of secondary sexual characteristics, (4) provide information about the level of benefits gained from mate choice, (5) provide information about the underlying mechanisms of mate choice. Variation in mate choice could be due to variability in preference functions, degree of choosiness, or both, and may arise due to genetic differences, developmental trajectories or proximate environmental factors. We review the evidence for genetic variation from genetic studies of heritability and also from data on the repeatability of mate-choice decisions (which can provide information about the upper limits to heritability). There can be problems in interpreting patterns of mate choice in terms of variation in mating p and we illustrate two main points. First, some factors can lead to mate choice patterns that mimic heritable variation in p and secondly other factors may obscure heritable p. These factors are divided into three overlapping classes, environmental, social and the effect of the female phenotype. The environmental factors discussed include predation risk and the costs of sampling; the social factors discussed include the effect of male–male interactions as well as female competition. We review the literature which presents data on how females sample males and discuss the number of cues females use. We conclude that sexual-selection studies have paid far less attention to variation among females than to variation among males, and that there is still much to learn about how females choose males and why different females make different choices. We suggest a number of possible lines for future research.  相似文献   

6.
Individuals vary in their ability to defend against pathogens. Determining how natural selection maintains this variation is often difficult, in part because there are multiple ways that organisms defend themselves against pathogens. One important distinction is between mechanisms of resistance that fight off infection, and mechanisms of tolerance that limit the impact of infection on host fitness without influencing pathogen growth. Theory predicts variation among genotypes in resistance, but not necessarily in tolerance. Here, we study variation among pea aphid (Acyrthosiphon pisum) genotypes in defense against the fungal pathogen Pandora neoaphidis. It has been well established that pea aphids can harbor symbiotic bacteria that protect them from fungal pathogens. However, it is unclear whether aphid genotypes vary in defense against Pandora in the absence of protective symbionts. We therefore measured resistance and tolerance to fungal infection in aphid lines collected without symbionts, and found variation among lines in survival and in the percent of individuals that formed a sporulating cadaver. We also found evidence of variation in tolerance to the effects of pathogen infection on host fecundity, but no variation in tolerance of pathogen‐induced mortality. We discuss these findings in light of theoretical predictions about host‐pathogen coevolution.  相似文献   

7.
We extend methods of quantitative genetics to studies of the evolution of reaction norms defined over continuous environments. Our models consider both spatial variation (hard and soft selection) and temporal variation (within a generation and between generations). These different forms of environmental variation can produce different evolutionary trajectories even when they favor the same optimal reaction norm. When genetic constraints limit the types of evolutionary changes available to a reaction norm, different forms of environmental variation can also produce different evolutionary equilibria. The methods and models presented here provide a framework in which empiricists may determine whether a reaction norm is optimal and, if it is not, to evaluate hypotheses for why it is not.  相似文献   

8.
Cultural transmission and the evolution of cooperative behavior   总被引:5,自引:0,他引:5  
Sociobiological theory predicts that humans should not cooperate with large groups of unrelated individuals. This prediction is based on genetic models that show that selection acting on variation between large unrelated groups will generally be much weaker than selection acting on variation between individuals. Recently, several authors have presented related models of human evolution that integrate cultural and genetic transmission of behavior. We show that in such models group selection is potentially a strong force. Data on ethnocentrism is examined in the context of these results.  相似文献   

9.
The role of cultural group selection in the evolution of human cooperation is hotly debated. It has been argued that group selection is more effective in cultural evolution than in genetic evolution, because some forms of cultural transmission (conformism and/or the tendency to follow a leader) reduce intra-group variation while creating stable cultural variation between groups. This view is supported by some models, while other models lead to contrasting and sometimes opposite conclusions. A consensus view has not yet been achieved, partly because the modelling studies differ in their assumptions on the dynamics of cultural transmission and the mode of group selection. To clarify matters, we created an individual-based model allowing for a systematic comparison of how different social learning rules governing cultural transmission affect the evolution of cooperation in a group-structured population. We consider two modes of group selection (selection by group replacement or by group contagion) and systematically vary the frequency and impact of group-level processes. From our simulations we conclude that the outcome of cultural evolution strongly reflects the interplay of social learning rules and the mode of group selection. For example, conformism hampers or even prevents the evolution of cooperation if group selection acts via contagion; it may facilitate the evolution of cooperation if group selection acts via replacement. In contrast, leader-imitation promotes the evolution of cooperation under a broader range of conditions.  相似文献   

10.
Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal’s physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.  相似文献   

11.
Practical conservation of biological diversity is dependent on reliable knowledge about what kind, how much, and where the diversity is. To obtain such knowledge three questions, why, what, and how, must be answered before commencing any biodiversity survey. While the questions why and what are often value decisions and thus determined outside the realm of scientific research, the question about how the surveys are conducted lies in the heart of science. Here, we report an intensive repeated survey of wood-inhabiting fungi with the aim of determining the optimal timing and number of the surveys for reliable estimation of the diversity of this species group. The research focusing on the ecology of wood-inhabiting fungi has been increasing but little is known about the reliability of the methods. The variation in the estimates of diversity among surveys was high and the results varied between studied species groups. The site-scale detectability for species belonging to different groups varied from 10 to 95% depending on the survey month and the species group. We conclude that because detectability of many fungi turned out to be poor even when surveys were conducted at an optimal time, the common practice of using a single fruit body survey to estimate fungal diversity of any given area is not enough. We suggest that multiple surveys at an optimal time should be a norm in fungal diversity studies. Improper methodology results in unreliable outcomes that have potential to hamper our goal of conserving the biological diversity.  相似文献   

12.
Turelli M  Barton NH 《Genetics》2004,166(2):1053-1079
We investigate three alternative selection-based scenarios proposed to maintain polygenic variation: pleiotropic balancing selection, G x E interactions (with spatial or temporal variation in allelic effects), and sex-dependent allelic effects. Each analysis assumes an additive polygenic trait with n diallelic loci under stabilizing selection. We allow loci to have different effects and consider equilibria at which the population mean departs from the stabilizing-selection optimum. Under weak selection, each model produces essentially identical, approximate allele-frequency dynamics. Variation is maintained under pleiotropic balancing selection only at loci for which the strength of balancing selection exceeds the effective strength of stabilizing selection. In addition, for all models, polymorphism requires that the population mean be close enough to the optimum that directional selection does not overwhelm balancing selection. This balance allows many simultaneously stable equilibria, and we explore their properties numerically. Both spatial and temporal G x E can maintain variation at loci for which the coefficient of variation (across environments) of the effect of a substitution exceeds a critical value greater than one. The critical value depends on the correlation between substitution effects at different loci. For large positive correlations (e.g., rho(ij)2>3/4), even extreme fluctuations in allelic effects cannot maintain variation. Surprisingly, this constraint on correlations implies that sex-dependent allelic effects cannot maintain polygenic variation. We present numerical results that support our analytical approximations and discuss our results in connection to relevant data and alternative variance-maintaining mechanisms.  相似文献   

13.
It is a challenge to measure sexual selection because both stochastic events (chance) and deterministic factors (selection) generate variation in individuals' reproductive success. Most researchers realize that random events ('noise') make it difficult to detect a relationship between a trait and mating success (i.e. the presence of sexual selection). There is, however, less appreciation of the dangers that arise if stochastic events vary systematically. Systematic variation makes variance-based approaches to measuring the role of selection problematic. This is why measuring the opportunity for sexual selection (I(s) and I(mates)) is so vulnerable to misinterpretation. Although I(s) does not measure actual sexual selection (because it includes stochastic variation in mating/fertilization success) it is often implicitly assumed that it will be correlated with the actual strength of sexual selection. The hidden assumption is that random noise is randomly distributed across populations, species or the sexes. Here we present a simple numerical example showing why this practice is worrisome. Specifically, we show that chance variation in mating success is higher when there are fewer potential mates per individual of the focal sex [i.e. when the operational sex ratio (OSR), is more biased]. This will lead to the OSR covarying with I(s) even when the strength of sexual selection is unaffected by the OSR. This can generate false confidence in identifying factors that determine variation in the strength of sexual selection. We emphasize that in nature, even when sexual selection is strong, chance variation in mating success is still inevitable because the number of mates per individual is a discrete number. We hope that our worked example will clarify a recent debate about how best to measure sexual selection.  相似文献   

14.
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.  相似文献   

15.
Variation in group size is ubiquitous among socially breeding organisms. An alternative to the traditional examination of average reproductive success in groups of different sizes is to examine individual decision making by determining the cues used for site selection. Once factors used for decision making are known, one can determine whether group-level patterns, such as group size variation, are emergent properties of individual-level decision rules. The advantage of this alternative approach is that it can explain the distribution of group sizes rather than just the occurrence of optimal group sizes. Using barn swallows, I tested, but did not support, the hypothesis that individuals settle at sites based on the previous success of conspecifics (i.e., performance-based conspecific attraction). Instead, I demonstrate that an adaptive site selection decision rule--to breed where it is possible to reuse previously constructed nests--predicts 83% of the variation in the number of breeding pairs at a site. Furthermore, experimental nest removals demonstrated that settlement decisions are also strongly influenced by site familiarity. I discuss the interaction of the cue-based site selection rule with the occurrence of site fidelity and how, more generally, a consideration of individual-level decision rules can improve our understanding of variation in many social behaviors.  相似文献   

16.
Helping is a cornerstone of social organization and commonplace in human societies. A major challenge for the evolutionary sciences is to explain how cooperation is maintained in large populations with high levels of migration, conditions under which cooperators can be exploited by selfish individuals. Cultural group selection models posit that such large-scale cooperation evolves via selection acting on populations among which behavioural variation is maintained by the cultural transmission of cooperative norms. These models assume that individuals acquire cooperative strategies via social learning. This assumption remains empirically untested. Here, I test this by investigating whether individuals employ conformist or payoff-biased learning in public goods games conducted in 14 villages of a forager–horticulturist society, the Pahari Korwa of India. Individuals did not show a clear tendency to conform or to be payoff-biased and are highly variable in their use of social learning. This variation is partly explained by both individual and village characteristics. The tendency to conform decreases and to be payoff-biased increases as the value of the modal contribution increases. These findings suggest that the use of social learning in cooperative dilemmas is contingent on individuals'' circumstances and environments, and question the existence of stably transmitted cultural norms of cooperation.  相似文献   

17.
The geographic mosaic theory of coevolution is stimulating much new research on interspecific interactions. We provide a guide to the fundamental components of the theory, its processes and main predictions. Our primary objectives are to clarify misconceptions regarding the geographic mosaic theory of coevolution and to describe how empiricists can test the theory rigorously. In particular, we explain why confirming the three main predicted empirical patterns (spatial variation in traits mediating interactions among species, trait mismatching among interacting species and few species-level coevolved traits) does not provide unequivocal support for the theory. We suggest that strong empirical tests of the geographic mosaic theory of coevolution should focus on its underlying processes: coevolutionary hot and cold spots, selection mosaics and trait remixing. We describe these processes and discuss potential ways each can be tested.  相似文献   

18.
A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity.  相似文献   

19.
Identifying and understanding the processes that underlie the observed variation in lifespan within and among species remains one of the central areas of biological research. Questions directed at how, at what rate and why organisms grow old and die link disciplines such as evolutionary ecology to those of cell biology and gerontology. One process now thought to have a key role in ageing is the pattern of erosion of the protective ends of chromosomes, the telomeres. Here, we discuss what is currently known about the factors influencing telomere regulation, and how this relates to fundamental questions about the relationship between lifestyle and lifespan.  相似文献   

20.
Much of the extant polymorphism has been attributed to spatial and temporal variation among selection regimes. Analysis of models entailing two alleles at a single locus has demonstrated that polymorphism may result from variation among selection regimes which prescribe monomorphism if constant. This relationship is studied in the context of several alleles at a locus.One result which is not valid with only two alleles is that variation among selection regimes which specify polymorphic equilibria may lead to a stable monomorphic equilibrium. The analyses of temporal variation and total panmixia spatial variation among environments show that temporal variation allows the simultaneous stability of equilibrium configurations which cannot be simultaneously stable under total panmixia spatial variation (hard or soft selection). The principle that polymorphism is more readily maintained with spatial than temporal variation is invalidated.Supported in part by Purdue Research Foundation and National Science Foundation (USA) grant MCS-8002227  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号