首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peracarpeae is a small tribe consisting of three genera: Homocodon, Heterocodon and Peracarpa, with a disjunct distribution between eastern Asia and western North America. Homocodon is endemic to southwestern China and was previously placed in the western North American genus Heterocodon. Our phylogenetic analysis using four plastid markers (matK, atpB, rbcL and trnL-F) suggests the polyphyly of Peracarpeae. Homocodon is sister to a clade consisting of the eastern Asian Adenophora, Hanabusaya and species of Campanula from the Mediterranean region and North America, rather than forming a clade with Heterocodon. Homocodon and its Eurasia relatives are estimated to have diverged in the early Miocene (16.84 mya, 95% HPD 13.35–21.45 mya). The eastern Asian Peracarpa constitutes a clade with the North American Heterocodon, Githopsis and three species of Campanula, supporting a disjunction between eastern Asia and North America in Campanulaceae. The Asian-North American disjunct lineages diverged in the early Miocene (16.17 mya, 95% HPD 13.12–20.9 mya). The biogeographic analyses suggest that Homocodon may be a relict of an early radiation in eastern Asia, and that Peracarpa and its closest North American relatives most likely originated from a Eurasian ancestor.  相似文献   

2.
Pachysandra is an eastern Asian-North American disjtunct genus with three species, two in eastern Asia (Pachysandra axillaris and Pachysandra terminalis) and one in eastern North America (Pachysandra procurnbens). Although morphological and cytological studies suggest a close affinity of Pprocumbens with P axillaris, molecular data from nuclear and chloroplast DNA regions have provided conflicting signals. In this study, we tested previous phylogenetic hypotheses using sequences of nuclear ribosomal DNA internal transcribed spacers and chloroplast ndhF gene from multiple individuals of each of the three species. We also estimated the time of divergence between eastem Asia and eastern North America. Our results support the morphological and cytological conclusion that P procumbens is more closely related to P axillaris than to P terminalis. The estimated time of divergence of P axillaris and P procumbens was 14.6±5.5 mya, consistent with estimates from many other eastern Asian-North American disjunct genera. The migration of Pachysandra populations from eastern Asia to North America might have occurred by way of the North Atlantic land bridge.  相似文献   

3.
This study examines molecular and morphological differentiation in Phryma L., which has only one species with a well-known classic intercontinental disjunct distribution between eastern Asia (EA) and eastern North America (ENA). Phylogenetic analysis of nuclear ribosomal ITS and chloroplast rps16 and trnL-F sequences revealed two highly distinct clades corresponding to EA and ENA. The divergence time between the intercontinental populations was estimated to be 3.68 ± 2.25 to 5.23 ± 1.37 million years ago (mya) based on combined chloroplast data using Bayesian and penalized likelihood methods. Phylogeographic and dispersal-vicariance (DIVA) analysis suggest a North American origin of Phryma and its migration into EA via the Bering land bridge. Multivariate analysis based on 23 quantitative morphological characters detected no geographic groups at the intercontinental level. The intercontinental populations of Phryma thus show distinct molecular divergence with little morphological differentiation. The discordance of the molecular and morphological patterns may be explained by morphological stasis due to ecological similarity in both continents. The divergence of Phryma from its close relatives in the Phrymaceae was estimated to be at least 32.32 ± 4.46 to 49.35 ± 3.18 mya.  相似文献   

4.
Symplocarpus, Lysichiton, and Orontium (Orontioideae) are three of the few north temperate genera of the primarily tropical Araceae. Symplocarpus is disjunctly distributed in eastern Asia (3 spp.) and eastern North America (1 sp.); Lysichiton has an intercontinental discontinuous distribution in eastern Asia (1 sp.) and northwestern North America (1 sp.); and the monotypic Orontium is restricted to eastern North America. Phylogenetic analysis of the trnL-F and ndhF sequences supports (1) the monophyly of both Symplocarpus and Lysichiton, (2) the sister-group relationship of Symplocarpus and Lysichiton, and (3) the clade of Orontium, Symplocarpus, and Lysichiton. Although Symplocarpus shows a much wider disjunction than Lysichiton, the estimated divergence time of the former [4.49+/-1.69 or 6.88+/-4.18 million years ago (mya)] was similar to that of the latter (4.02+/-1.60 or 7.18+/-4.33 mya) based on the penalized likelihood and the Bayesian dating methods, respectively. Eastern Asia was suggested to be the ancestral area of the Symplocarpus-Lysichiton clade based on the dispersal-vicariance analysis. Our biogeographic results support independent migrations of Symplocarpus and Lysichiton across the Bering land bridge in the late Tertiary (Pliocene/late Miocene). Fossil evidence suggests Orontioideae dated back to the late Cretaceous in the temperate Northern Hemisphere (72 mya). The relative rate test shows similar substitution rates of the trnL-F sequences between the proto and the true aroids, although the latter has substantially higher species diversity. The proto Araceae perhaps suffered from a higher rate of extinction in the temperate zone associated with periods of climatic cooling in the Tertiary.  相似文献   

5.
Sequence data of the chloroplast gene rbcL were used to estimate the time of the well-known eastern Asian-eastern North American floristic disjunction. Sequence divergence of rbcL was examined for 22 species of 11 genera (Campsis, Caulophyllum, Cornus, Decumaria, Liriodendron, Menispermum, Mitchella, Pachysandra, Penthorum, Podophyllum, and Phryma) representing a diverse array of flowering plants occurring disjunctly in eastern Asia and eastern North America. Divergence times of putative disjunct species pairs were estimated from synonymous substitutions, using rbcL molecular clocks calibrated for Cornus. Relative rate tests were performed to assess rate constancy of rbcL evolution among lineages. Corrections of estimates of divergence times for each species pair were made based on rate differences of rbcL between Cornus and other species pairs. Results of these analyses indicate that the time of divergence of species pairs examined ranges from 12.56 +/- 4.30 million years to recent (<0.31 million years), with most within the last 10 million years (in the late Miocene and Pliocene). These results suggest that the isolation of most morphologically similar disjunct species in eastern Asia and eastern North America occurred during the global climatic cooling period that took place throughout the late Tertiary and Quaternary. This estimate is closely correlated with paleontological evidence and in agreement with the hypothesis that considers the eastern Asian-eastern North American floristic disjunction to be the result of the range restriction of a once more or less continuously distributed mixed mesophytic forest of the Northern Hemisphere that occurred during the late Tertiary and Quaternary. This implies that in most taxa the disjunction may have resulted from vicariance events. However, long-distance dispersal may explain the disjunct distribution of taxa with low divergence, such as Menispermum.  相似文献   

6.
Maianthemum (Ruscaceae) comprises 28-38 species and includes the two traditionally recognized genera: Maianthemum sensu stricto and Smilacina. Thirty-seven samples representing 22 species of Maianthemum and six closely related outgroup taxa were sequenced for eight chloroplast and nuclear markers (trnL-F, rps16, rpl16, psbA-trnH, rbcL, ndhF, trnK, and ITS) with a total length of nearly 10,000 base pairs. Phylogenetic analyses supported the monophyly of Maianthemum with Maianthemum sensu stricto nested within Smilacina. Almost all species from the eastern Himalayan region in SW China except for Maianthemum tatsienense and M. stenolobum form a well supported clade. This clade is characterized morphologically by short filaments and large anthers, relatively large flowers, and pubescent stems and leaves. Maianthemum tatsienense and M. stenolobum from SW to central China form another clade. The other species from eastern Asia (central to NE China and Japan) and the New World fall into several clades. The intercontinental disjunction between eastern Asia and North America in Maianthemum sensu stricto is estimated to be at 1.68 million years ago (mya) with the Bayesian relaxed clock relying on uncorrelated rates. A recent radiation at about 2.04mya is suggested in the high mountains of SW China, corresponding to the geographical heterogeneity in that region after the uplift of the Himalayas. Long distance dispersal by birds may have facilitated the evolution of their intercontinental disjunction and their biogeographic diversifications in SW China.  相似文献   

7.
To better understand the evolutionary history of Linanthus (Polemoniaceae) and its relatives, molecular phylogenies based on DNA sequence data from the internal transcribed spacer (ITS) region of nrDNA and the chloroplast gene matK were estimated using several methods. Our data suggest two separate and well-supported lineages of Linanthus in close association with two other genera-Leptodactylon and Phlox. These results agree with previous molecular systematic work on the Polemoniaceae, but do not support the traditional classification of the genus as a natural group, nor do they support the sectional classification within the genus. With a distribution centered primarily in western North America and a high degree of endemism in the California Floristic Province, it has been suggested by Raven and Axelrod that the origin and diversification of Linanthus and its relatives were tied to the development of a summer-dry climate in western North America, which began around 13-15 million years ago (mya). Increased drying during the Pliocene (1.2-5 mya) has also been hypothesized by Axelrod to have led to an increase in plant speciation in California and adjacent areas. Divergence times within the Linanthus lineages were estimated from the ITS and matK gene trees. A log-likelihood ratio test could not reject clock-like evolution for the matK data; however, the clock was strongly rejected for the ITS data set. Although ITS molecular evolution was not clock-like, the estimated times of divergence were similar to those of the matK data set. Within both lineages of Linanthus there seems to have been considerable diversification that has occurred since the Pliocene.  相似文献   

8.
Abstract Pachysandra is an eastern Asian–North American disjunct genus with three species, two in eastern Asia (Pachysandra axillaris and Pachysandra terminalis) and one in eastern North America (Pachysandra procumbens). Although morphological and cytological studies suggest a close affinity of P. procumbens with P. axillaris, molecular data from nuclear and chloroplast DNA regions have provided conflicting signals. In this study, we tested previous phylogenetic hypotheses using sequences of nuclear ribosomal DNA internal transcribed spacers and chloroplast ndhF gene from multiple individuals of each of the three species. We also estimated the time of divergence between eastern Asia and eastern North America. Our results support the morphological and cytological conclusion that P. procumbens is more closely related to P. axillaris than to P. terminalis. The estimated time of divergence of P. axillaris and P. procumbens was 14.6±5.5 mya, consistent with estimates from many other eastern Asian–North American disjunct genera. The migration of Pachysandra populations from eastern Asia to North America might have occurred by way of the North Atlantic land bridge.  相似文献   

9.
Rhododendron subgenus Hymenanthes subsection Pontica is exceptional among Tertiary relict groups in having a high proportion of species (4 of 11) native to SW Eurasia. A phylogeny based on cpDNA matK and trnL-F indicated that multiple Pontica lineages colonised each of SW Eurasia, SE North America, and NE Asia, with little or no speciation within regions thereafter. Therefore, multiple (3-4) Pontica lineages survived the Quaternary in SW Eurasia, in contrast to other Tertiary relict genera. Pontica comprises two major clades, one of which is wholly Eurasian, and paraphyletic with respect to at least some of the remaining 200 species of subgenus Hymenanthes, which are all distributed in SE Asia. The other clade has species from W and SE North America, SW Eurasia, and NE Asia. According to synonymous matK substitution data, the two clades diverged 9-6 million years ago (mya), whereas most divergence within them happened 5-3 mya. Although the phylogeny indicates probable trans-Atlantic migration for one of two America-Eurasia disjunctions in Pontica, the timing supports migration via Beringia for both.  相似文献   

10.
Toxicodendron is a genus in the Rhus complex of Anacardiaceae with a disjunct distribution between eastern Asia and North America, extending to southeastern Asia and the neotropics. Nuclear (internal transcribed spacer, external transcribed spacer, and NIA-i3) and chloroplast (ndhF and trnL-F) sequences were used to construct phylogenetic relationships of Toxicodendron. Phylogenetic analysis of these data strongly support Toxieodendron as a monophyletic group distinct from other genera of the Rhus complex, and the phylogeny does not fully corroborate classification at the sectional level. Two temperate disjunct lineages were detected, one from section Toxicodendron and the other between the eastern North American Toxicodendron vernix and the eastern Asian Toxicodendron vernieifluum. Their divergence times were estimated to be 13.46 (7.95-19.42) and 7.53 (2.76-12.86) mya, respectively. The disjunction between section Griffithii (taxa from warm temperate to tropical Asia) and Toxieodendron striatum (from the neotropics) was supported and their divergence time was estimated to be 20.84 (11.1 6-30.52) mya in the early Miocene. Our biogeographic results and the paleontological data support the Bering land bridge as the most likely route to explain the temperate disjunctions, yet the tropical disjunction in Toxicodendron seems to be best explained by the North Atlantic land bridge hypothesis.  相似文献   

11.
Sassafras (Lauraceae) consists of three species disjunct between eastern Asia (S. tzumu and S. randaiense) and eastern North America (S. albidum). Phylogenetic analysis based on sequences of nuclear ribosomal ITS and three chloroplast non-coding regions (rpl16, trnL-F, and psbA-trnH) showed that Sassafras is monophyletic and that the eastern North American S. albidum is sister to the clade of its two eastern Asian counterparts. Their intercontinental divergence was estimated to be 13.80 ± 2.29−16.69 ± 2.52 million years ago (mya) using the penalized likelihood method with the ITS and three chloroplast markers. Biogeographic analyses combined with fossil evidence suggest that Sassafras has a relict distribution in the Northern Hemisphere without a Gondwanan link. The divergence time of the two eastern Asian species (the continental Chinese Sassafras tzumu and S. randaiense endemic to Taiwan) is estimated to be 0.61 ± 0.75−2.23 ± 0.76 mya. Sassafras randaiense from Taiwan was most likely derived from an ancestor from continental China.  相似文献   

12.
Chloroplast DNA (cpDNA) variation was surveyed with 20 restriction endonucleases for the eastern Asian and eastern North American disjunct genus Symplocarpus (Araceae). The cpDNA phylogeny reveals a sister group relationship between S. foetidus from eastern North America and S. renifolius from eastern Asia. The cpDNA divergence between the two intercontinental sister species is 0.61%, which suggests an estimated divergence time of 6.1 million years ago during the late Miocene. The Bering land bridge hypothesis is compatible with the estimated time of divergence for the migration of Symplocarpus between eastern Asia and North America. Furthermore, a single origin of the exothermic spadices in Symplocarpus is suggested by the phylogeny. The cpDNA data also provide independent support for the recognition of three species within the genus.  相似文献   

13.
The sweet gum genus Liquidambar (Altingiaceae) has two species in eastern Asia, one in eastern North America, and one in western Asia. Mature infructescences are studied to provide anatomical, morphological, and micromorphological details, some of which are newly recognized. Homology is suggested between extrafloral spinose processes of L. formosana and L. acalycina, braid-like ornamentation of L. styraciflua, and broad intercarpellate areas of L. orientalis. Morphology, position, number, and the presence of similar structures in the closely related Hamamelidaceae s.s. support their derivation from sterile flowers. Morphological cladistic analysis using 43 characters supports the monophyly of Liquidambar with Altingia as its sister. The matK analysis contrastingly places Altingia sister to the L. acalycina-L. formosana clade, rendering Liquidambar paraphyletic. Discordance between morphological and matK data sets may result from both different rates of morphological evolution and convergence. Several similarities between Altingia and L. acalycina are symplesiomorphic in the morphological cladistic analysis. Microaltingia apocarpela, from the Cretaceous of eastern North America, documents the earliest known fossil divergence within Altingiaceae. The Miocene Liquidambar changii of western North America is sister to a clade of extant Liquidambar species. Consideration of this fossil evidence reveals complex intercontinental biogeographic disjunctions in Altingiaceae.  相似文献   

14.
Eastern North America is the location of the world's most species-rich temperate freshwater fish fauna. Hypotheses regarding the geographic and temporal scale of teleost diversification in this region have not been broadly investigated using absolute divergence time estimates among the constituent lineages. This study used time-calibrated molecular phylogenies estimated from mitochondrial and nuclear genes to investigate the temporal and geographic signatures of diversification within barcheek darters, a clade of allopatrically distributed species endemic to the Eastern Highlands. Results from divergence time estimates using an uncorrelated lognormal model suggest that the barcheek darters are an ancient group with a crown node estimate of 16.3 mya, 95% highest posterior density (HPD): [12.4, 20.5], and the clade is characterized by substantial intraspecific divergence times within several species. In particular, the Caney Fork endemic Etheostoma basilare comprises five strongly supported and deeply divergent clades with a most recent common ancestor estimated at 8.0 mya, 95% HPD: [5.6, 10.7]. These results are concordant with the hypothesis that geologically stable areas of eastern North America have facilitated both the generation and preservation of lineages across a substantial breadth of evolutionary time, and that allopatric speciation in darters has occurred at much smaller spatial scales than previously realized.  相似文献   

15.
The disjunct genus Cercis has been used to test models of Northern Hemisphere historical biogeography. Previous phylogenetic estimates employing DNA sequences of the ITS region and (in one study) those of ndhF recovered a well supported clade of North American and western Eurasian species that was nested within a paraphyletic group of Chinese species. Resolution and clade support within the tree were otherwise low and the monophyly of Cercis canadensis was uncertain. Here we conduct a phylogenetic analysis of Cercis with a higher number of regions (ITS, ndhF, rpoB-trnC, trnT-trnD, and trnS-trnG) and samples than in previous studies. Results corroborate the initial divergence between the Chinese species Cercis chingii and the rest of the genus. Support is newly found both for a clade of the two North American species as sister to the western Eurasian species, and for the monophyly of C. canadensis. As in a previous study, divergence between North American and western Eurasian Cercis was estimated as mid-Miocene (ca. 13 million years ago), and the ancestor in which this divergence occurred was inferred to be xerophytic. Contrary to previous studies, however, our data infer strictly east-to-west vicariance. The timing of the transatlantic divergence in Cercis is too recent to be explained by a postulated continuous belt of semi-arid vegetation between North America and Europe in the Paleogene, suggesting instead the presence of a Miocene North Atlantic corridor for semi-arid plants. In the absence of strong evidence from other sources, the possibility that Cercis has been able to quickly adapt from mesophytic antecedents to semi-arid conditions whenever the latter have arisen in the Northern Hemisphere can be considered a plausible alternative, although parsimony optimization renders this scenario two steps longer.  相似文献   

16.
Leibnitzia comprises six species of perennial herbs that are adapted to high elevation conditions and is one of only two Asteraceae genera known to have an exclusively disjunct distribution spanning central to eastern Asia and North America. Molecular phylogenetic analysis of Leibnitzia and other Gerbera-complex members indicates that Leibnitzia is monophyletic, which is in contrast with our expectation that the American Leibnitzia species L. Lyrata and L. Occimadremis would be more closely related to another American member of the Gerbera-complex, namely Chaptalia. Ancestral area reconstructions show that the historical biogeography of the Gerbera-complex mirrors that of the entire Asteraceae, with early diverging lineages located in South America that were followed by transfers to Africa and Eurasia and, most recently, to North America. Intercontinental transfer of Leibnitzia appears to have been directed from Asia to North America. Independent calibrations of nuclear (ribosomal DNA internal transcribed spacer region) and chloroplast (trnL-rpl32 intron) DNA sequence data using relaxed clock methods and either mean rate or fossil-based priors unanimously support Miocene and younger divergence times for Gerbera-complex taxa. The ages are not consistent with most Gondwanan vicariance episodes and, thus, the global distribution of Gerbera-complex members must be explained in large part by long-distance dispersal. American species of Leibnitzia are estimated to have diverged from then- Asian ancestor during the Quaternary (ca. 2 mya) and either migrated overland to North America via Beringia and retreated southwards along high elevation corridors to their- present location in southwestern North America or were dispersed long distance.  相似文献   

17.
Competing hypotheses that rely either on a stepping-stone dispersal via the North Atlantic or the Bering land bridges, or more recent transoceanic dispersal, have been proposed to explain the disjunct distribution of Mediterranean flora in southern Europe and western North America. These hypotheses were tested with molecular dating using a phylogeny of the moss genus Homalothecium based on ITS, atpB-rbcL, and rpl16 sequence data. The monophyly of two main lineages in Western Palearctic (Europe, central Asia and north Africa) and North America is consistent with the ancient vicariance hypothesis. The monophyly of Madeiran H. sericeum accessions supports the recognition of the Macaronesian endemic H. mandonii. A range of absolute rates of molecular evolution documented in land plants was used as probabilistic calibration prior by a Bayesian inference implementing a relaxed-clock model to derive ages for the nodes of interest. Our age estimates for the divergence of the American and Western Palearctic Homalothecium clade (5.7 Ma, IC 3.52-8.26) and the origin of H. mandonii (2.52 Myr IC 0.86-8.25) are not compatible with the ancient vicariance hypothesis. Age estimates suggests that species distributions result from rare instances of dispersal and subsequent sympatric diversification. The calibrated phylogeny indicates that Homalothecium has undergone a fast radiation during the last 4 Myr, which is consistent with the low levels of morphological divergence among sibling species.  相似文献   

18.
Sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA, the chloroplast ndhF gene, and chloroplast trnL-F regions (trnL intron, and trnL [UAA] 3' exon-trnF [GAA] intergenic spacer) were used for phylogenetic analyses of Rhus, a genus disjunctly distributed in Asia, Europe, Hawaii, North America, and Northern Central America. Both ITS and cpDNA data sets support the monophyly of Rhus. The monophyly of subgenus Rhus was suggested by the combined cpDNA and ITS data, and largely supported in the cpDNA data except that Rhus microphylla of subgenus Lobadium was nested within it. The monophyly of subgenus Lobadium was strongly supported in the ITS data, whereas the cpDNA data revealed two main clades within the subgenus, which formed a trichotomy with the clade of subgenus Rhus plus R. microphylla. The ITS and cpDNA trees differ in the positions of Rhus michauxii, R. microphylla, and Rhus rubifolia, and hybridization may have caused this discordance. Fossil evidence indicates that Rhus dates back to the early Eocene. The penalized likelihood method was used to estimate divergence times, with fossils of Rhus subgenus Lobadium, Pistacia and Toxicodendron used for age constraints. Rhus diverged from its closest relative at 49.1+/-2.1 million years ago (Ma), the split of subgenus Lobadium and subgenus Rhus was at 38.1+/-3.0 Ma. Rhus most likely migrated from North America into Asia via the Bering Land Bridge during the Late Eocene (33.8+/-3.1 Ma). Rhus coriaria from southern Europe and western Asia diverged from its relatives in eastern Asia at 24.4+/-3.2 Ma. The Hawaiian Rhus sandwicensis diverged from the Asian Rhus chinensis at 13.5+/-3.0 Ma. Subgenus Lobadium was inferred to be of North American origin. Taxa of subgenus Lobadium then migrated southward to Central America. Furthermore, we herein make the following three nomenclatural combinations: (1) Searsia leptodictya (Diels) T. S. Yi, A. J. Miller and J. Wen, comb. nov., (2) Searsia pyroides (A. Rich.) T. S. Yi, A. J. Miller and J. Wen, comb. nov., and (3) Searsia undulata (Jacq.) T. S. Yi, A. J. Miller and J. Wen, because our analyses support the segregation of Searsia from Rhus.  相似文献   

19.
Aralia sect. Aralia (Araliaceae) consists of approximately eight species disjunctly distributed in Asia and North America. Phylogenetic and biogeographic analyses were conducted using sequences of the internal transcribed spacer regions of the nuclear ribosomal DNA. Aralia racemosa from eastern North America was sister to A. californica from western North America. Aralia cordata from eastern Asia did not form a species-pair relationship with the eastern North American A. racemosa. The two subspecies of A. racemosa formed a monophyletic group. Biogeographic analyses showed a close area relationship between eastern North America and western North America. The Himalayas were cladistically basal and eastern Asia was placed between the Himalayas and North America. The biogeographic analysis supported the origin of the eastern Asian and eastern North American disjunct pattern in Aralia sect. Aralia via the Bering land bridges. Comparisons with results of phylogenetic analyses of other genera suggested that (1) the floristic connection between eastern North America and western North America may be stronger than previously thought; and (2) the biogeographic patterns in the Northern Hemisphere are complex. Furthermore, a lack of correlation between sequence divergence values and phylogenetic positions was observed, suggesting the importance of a phylogenetic framework in biogeographic analyses.  相似文献   

20.
Leaf beetles of the genus Plateumaris inhabit wetlands across the temperate zone of the Holarctic region. To explore the phylogeographic relationships among North American, East Asian, and European members of this genus and the origin of the species endemic to Japan, we studied the molecular phylogeny of 20 of the 27 species in this genus using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and the 16S and nuclear 28S rRNA genes. The molecular phylogeny revealed that three species endemic to Europe are monophyletic and sister to the remaining 11 North American and six Asian species. Within the latter clade, North American and Asian species did not show reciprocal monophyly. Dispersal-vicariance analysis and divergence time estimation revealed that the European and North America-Asian lineages diverged during the Eocene. Moreover, subsequent differentiation occurred repeatedly between North American and Asian species, which was facilitated by three dispersal events from North America to Asia and one in the opposite direction during the late Eocene through the late Miocene. Two Japanese endemics originated from different divergence events; one differentiated from the mainland lineage after differentiation from the North American lineage, whereas the other showed a deep coalescence from the North American lineage with no present-day sister species on the East Asian mainland. This study of extant insects provides molecular phylogenetic evidence for ancient vicariance between Europe and East Asia-North America, and for more recent (but pre-Pleistocene) faunal exchanges between East Asia and North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号