首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siberian stone pine, Pinus sibirica Du Tour is one of the most economically and environmentally important forest-forming species of conifers in Russia. To study these forests a large number of highly polymorphic molecular genetic markers, such as microsatellite loci, are required. Prior to the new high-throughput next generation sequencing (NGS) methods, discovery of microsatellite loci and development of micro-satellite markers were very time consuming and laborious. The recently developed draft assembly of the Siberian stone pine genome, sequenced using the NGS methods, allowed us to identify a large number of microsatellite loci in the Siberian stone pine genome and to develop species-specific PCR primers for amplification and genotyping of 70 microsatellite loci. The primers were designed using contigs containing short simple sequence tandem repeats from the Siberian stone pine whole genome draft assembly. Based on the testing of primers for 70 microsatellite loci with tri-, tetra- or pentanucleotide repeats, 18 most promising, reliable and polymorphic loci were selected that can be used further as molecular genetic markers in population genetic studies of Siberian stone pine.  相似文献   

2.
We studied the genetic structure of a red deer (Cervus elaphus) population in 8 woodlands of northeastern Poland and 1 in western Belarus and compared it with the documented history of the population in the region. Red deer nearly went extinct in the region in the 18th and 19th centuries. In the mid-19th century, reintroductions began and continued until the mid-1960s. Animals were translocated from various sites in Poland and other European countries. We genotyped 303 individuals using 14 microsatellite loci and sequenced 253 individuals for a fragment of the control region (mitochondrial DNA [mtDNA]). The microsatellite analyses demonstrate that 3 genetically separate subpopulations exist, but 4 according to mtDNA. All haplotypes found in northeastern Poland are closely related to haplotypes from northern and northwestern Europe. The only individuals that could have originated from autochthonous red deer populations, rather than introductions, were found in Napiwoda Forest. The present regional genetic structure of the species is consistent with the known history of red deer translocations. Current patterns of genetic diversity in these populations are determined by the interaction of past human management and contemporary natural migrations. © 2012 The Wildlife Society.  相似文献   

3.
Genetic diversity is low in natural populations of red pine, Pinus resinosa, a species that has a vast range across north-eastern North America. In this study, we examined 10 chloroplast microsatellite or simple sequence repeats (cpSSR) loci in 136 individuals from 10 widespread populations. Substantial variation for the cpSSR loci was observed in the study populations. The contrast with red pine's lack of variation for other types of loci is likely to be due to the higher mutation rates typical of SSR loci. The amount of variation is lower than that generally found for cpSSR loci in other pine species. In addition, the variation exhibits a striking geographical pattern. Most of the genetic diversity is among populations, with little within populations, indicating substantial isolation of and genetic drift within many populations in the southern half of the species distribution. The greatest diversity now occurs in the north-eastern part of New England, which is especially intriguing because this entire area was glaciated. Thus the centre of diversity cannot be the origin of postglacial populations, rather it is likely caused by admixture, most probably because of influences from two separate refugia. Furthermore, the pattern indicates that the spread of red pine since the last glaciation is rather more complex than usually described, and it likely includes more than one refugia, complex migration routes, and postglacial-retreat isolation and genetic drift among shrinking populations in regions of the present southern range.  相似文献   

4.
Microsatellite markers were used to characterize the structure of genetic diversity in natural Moroccan Aleppo pine (Pinus halepensis Mill.) populations, the most southwesterly marginal populations of the species in the Mediterranean Basin. Twenty-two natural populations and one artificial population, located in four regions covering most of the natural range of P. halepensis in the country, were sampled. Across this range, towards the south and west (and towards high altitudes) the populations become increasingly discrete and discontinuous. The nuclear microsatellite marker analysis suggests that a large proportion of the Aleppo pines in Morocco have derived from a single genetic lineage, represented by a central group of 11 of the examined populations located in the High and Middle Atlas Mountains. In addition, two smaller groups, represented by the marginal southwestern High Atlas populations, and three still smaller north / northeastern groups of populations located in the Rif and northeast Middle Atlas Mountains, could be genetically distinguished. Further, coalescence analysis of historical demographic population patterns suggests that ancient bottlenecks occurred in all of the natural populations. However, the population differentiation and genetic diversity levels we found were good (F(st) =15.47), presumably because of the species' good potential for long-distance dispersal of seeds and high invasive capacity, which appear to have maintained a state of stable near-equilibrium, meta-population dynamics since ancient times.  相似文献   

5.
Populations of Dalbulus maidis (DeLong and Wolcott) from the northeastern and central-southern regions of Brazil differ morphologically, suggesting that they could be genetically isolated. Here we used the random amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR) technique to estimate genetic structuring of this leafhopper species among five geographically distant localities across those regions and to estimate gene flow between populations. Ten specimens were sampled per population and genotyped with RAPD markers generated from amplification with nine oligonucleotides. The percentage of polymorphic loci was 78% in relation to the total number of amplified loci, and genetic similarity either between or within populations was higher than 0.72. Cluster analysis grouped specimens from the northeastern population (Mossoró/RN) into a single group, whereas central-southern specimens were not grouped in relation to their places of origin. Overall, the genetic subdivision index (Fst) was low (or= 0.192 and Nm 相似文献   

6.
Most conifer species occur in large continuous populations, but radiata pine, Pinus radiata, occurs only in five disjunctive natural populations in California and Mexico. The Mexican island populations were presumably colonized from the mainland millions of years ago. According to Axelrod (1981), the mainland populations are relicts of an earlier much wider distribution, reduced some 8,000 years ago, whereas according to Millar (1997, 2000), the patchy metapopulation-like structure is typical of the long-term population demography of the species. We used 19 highly polymorphic microsatellite loci to describe population structure and to search for signs of the dynamics of population demography over space and time. Frequencies of null alleles at microsatellite loci were estimated using an approach based on the probability of identity by descent. Microsatellite genetic diversities were high in all populations [expected heterozygosity (H(e)) = 0.68-0.77], but the island populations had significantly lower estimates. Variation between loci in genetic differentiation (F(ST)) was high, but no locus deviated statistically significantly from the rest at an experiment wide level of 0.05. Thus, all loci were included in subsequent analysis. The average differentiation was measured as F(ST) = 0.14 (SD 0.012), comparable with earlier allozyme results. The island populations were more diverged from the other populations and from an inferred common ancestral gene pool than the mainland ones. All populations showed a deficiency of expected heterozygosity given the number of alleles, the mainland populations more so than the island ones. The results thus do not support a recent important contraction in the mainland range of radiata pine.  相似文献   

7.
We isolated and characterized microsatellite loci in Viola websteri (Violaceae), an endangered species from Korea and endemic to Northeast Asia. A total of 27 microsatellite loci were developed and tested in Korean and Chinese populations. The number of alleles per locus varied from two to eight. The observed and expected heterozygosities within two populations were 0.000 to 1.000 and 0.080 to 0.816, respectively. Korean and Chinese populations were clearly distinguished by the private alleles from 16 loci. A total of 21 loci out of the 27 developed loci were successfully cross-amplified in 39 other Viola species. We believe that these microsatellite loci will be useful for future studies on genetic diversity and population structure of V. websteri, as well as other Viola species.  相似文献   

8.
The possibly distinct Carpathian red deer was compared genetically to other European populations. We screened 120 red deer specimens from Serbia, the Romanian lowland and the Romanian Carpathians for genetic variability using 582 bp of the mitochondrial control region and nine polymorphic nuclear microsatellite loci. The study aimed at a population genetic characterization of the Carpathian red deer, which are often treated as a distinct subspecies (Cervus elaphus montanus). The genetic integrity of the Carpathian populations was confirmed through the haplotype distribution, private alleles and genetic distances. The Carpathian red deer are thus identified as one of the few remaining natural populations of this species, deserving special attention among game and conservation biologists. The history of the populations studied, in particular the introduction of Carpathian red deer into Romanian lowland areas in the 20th century, was reflected by the genetic data.  相似文献   

9.
Detection of the genetic effects of recent habitat fragmentation in natural populations can be a difficult task, especially for high gene flow species. Previous analyses of mitochondrial DNA data from across the current range of Speyeria idalia indicated that the species exhibited high levels of gene flow among populations, with the exception of an isolated population in the eastern portion of its range. However, some populations are found on isolated habitat patches, which were recently separated from one another by large expanses of uninhabitable terrain, in the form of row crop agriculture. The goal of this study was to compare levels of genetic differentiation and diversity among populations found in relatively continuous habitat to populations in both recently and historically isolated habitat. Four microsatellite loci were used to genotype over 300 individuals from five populations in continuous habitat, five populations in recently fragmented habitat, and one historically isolated population. Results from the historically isolated population were concordant with previous analyses and suggest significant differentiation. Also, microsatellite data were consistent with the genetic effects of habitat fragmentation for the recently isolated populations, in the form of increased differentiation and decreased genetic diversity when compared to nonfragmented populations. These results suggest that given the appropriate control populations, microsatellite markers can be used to detect the effects of recent habitat fragmentation in natural populations, even at a large geographical scale in high gene flow species.  相似文献   

10.
Intraspecific genetic diversity and divergence have a large influence on the adaption and evolutionary potential of species. The widely distributed starfish, Coscinasterias tenuispina, combines sexual reproduction with asexual reproduction via fission. Here we analyse the phylogeography of this starfish to reveal historical and contemporary processes driving its intraspecific genetic divergence. We further consider whether asexual reproduction is the most important method of propagation throughout the distribution range of this species. Our study included 326 individuals from 16 populations, covering most of the species’ distribution range. A total of 12 nuclear microsatellite loci and sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analysed. COI and microsatellites were clustered in two isolated lineages: one found along the southwestern Atlantic and the other along the northeastern Atlantic and Mediterranean Sea. This suggests the existence of two different evolutionary units. Marine barriers along the European coast would be responsible for population clustering: the Almeria–Oran Front that limits the entrance of migrants from the Atlantic to the Mediterranean, and the Siculo‐Tunisian strait that divides the two Mediterranean basins. The presence of identical genotypes was detected in all populations, although two monoclonal populations were found in two sites where annual mean temperatures and minimum values were the lowest. Our results based on microsatellite loci showed that intrapopulation genetic diversity was significantly affected by clonality whereas it had lower effect for the global phylogeography of the species, although still some impact on populations’ genetic divergence could be observed between some populations.  相似文献   

11.
基于微卫星标记的桃蚜种群寄主遗传分化   总被引:4,自引:0,他引:4  
桃蚜Myzus persicae(Sulzer)是寄主范围最广、危害最大的蚜虫种类之一。为了探明桃蚜在不同寄主上的遗传分化特点,采用微卫星分子标记技术,对西兰花、桃树、辣椒上的桃蚜种群进行遗传多样性和遗传结构研究。结果表明,在所选用的5个微卫星位点上共检测到38个等位基因,平均每个位点的等位基因数达到7.6个,桃树种群遗传多样性最高,这可能是因为各种夏寄主上的桃蚜迁回桃树上越冬,从而使多种等位基因和基因型得以聚集的原因。等位基因频率差异分析显示西兰花种群、桃树种群和辣椒种群两两之间(除了桃树06种群和辣椒06种群之间没有遗传分化外)都出现了明显遗传分化,相比之下桃树种群和辣椒种群的分化程度要比桃树种群和西兰花种群的分化程度低,这可能预示着西兰花寄主上的桃蚜正在向远离桃树和辣椒种群的方向进化。  相似文献   

12.
The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.  相似文献   

13.
Native insects can become epidemic pests in agro-ecosystems. A population genetics approach was applied to analyze the emergence and spread of outbreak populations of native insect species. Outbreaks of the mirid bug, Stenotus rubrovittatus, have rapidly expanded over Japan within the last two decades. To characterize the outbreak dynamics of this species, the genetic structure of local populations was assessed using polymorphisms of the mtDNA COI gene and six microsatellite loci. Results of the population genetic analysis suggested that S. rubrovittatus populations throughout Japan were genetically isolated by geographic distance and separated into three genetic clusters occupying spatially segregated regions. Phylogeographic analysis indicated that the genetic structure of S. rubrovittatus reflected post-glacial colonization. Early outbreaks of S. rubrovittatus in the 1980s occurred independently of genetically isolated populations. The genetic structure of the populations did not fit the pattern of an outbreak expansion, and therefore the data did not support the hypothesis that extensive outbreaks were caused by the dispersal of specific pestiferous populations. Rather, the historical genetic structure prior to the outbreaks was maintained throughout the increase in abundance of the mirid bug. Our study indicated that changes in the agro-environment induced multiple outbreaks of native pest populations. This implies that, given suitable environmental conditions, local populations may have the potential to outbreak even without invasion of populations from other environmentally degraded areas.  相似文献   

14.
The stock characterization of wild populations of Silonia silondia is important for its scientific management. At present, the information on genetic parameters of S. silondia is very limited. The species-specific microsatellite markers were developed in current study. The validated markers were used to genotype individuals from four distant rivers. To develop de novo microsatellite loci, an enriched genomic library was constructed for S. silondia using affinity–capture approach. The markers were validated for utility in population genetics. A total number of 76 individuals from four natural riverine populations were used to generate data for population analysis. The screening of isolated repeat sequences yielded eleven novel polymorphic microsatellite loci. The microsatellite loci exhibited high level of polymorphism, with 6–24 alleles per locus and the PIC value ranged from 0.604 to 0.927. The observed (Ho) and expected (He) heterozygosities ranged from 0.081 to 0.84 and 0.66 to 0.938, respectively. The AMOVA analysis indicated significant genetic differentiation among riverine populations (overall FST = 0.075; P < 0.0001) with maximum variation (92.5 %) within populations. Cross-priming assessment revealed successful amplification (35–38 %) of heterologous loci in four related species viz. Clupisoma garua, C. taakree, Ailia coila and Eutropiichthys vacha. The results demonstrated that these de novo polymorphic microsatellite loci are promising for population genetic variation and diversity studies in S. silondia. Cross-priming results indicated that these primers can help to get polymorphic microsatellite loci in the related catfish species of family Schilbidae.  相似文献   

15.
The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy–Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7–36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior to microsatellite development. The rapid identification and validation of microsatellite loci using next-generation sequencing technology warrant its integration into future microsatellite loci development for key aquaculture species in Vietnam and more generally, aquaculture countries in the South East Asia region.  相似文献   

16.
17.
In order to study the genetic structure of the Adriatic shared stock of red mullet (Mullus barbatus), we developed a set of dinucleotide microsatellite markers. A dinucleotide-enriched genomic library was obtained, and 6 polymorphic dinucleotide loci were successfully optimized. The markers showed high expected heterozygosity (from 0.68 to 0.92) and allele number (from 12 to 33); thus they appear to be suitable for detecting genetic differences in the population of red mullet. Four Adriatic samples were subsequently analyzed for microsatellite variation, and the results showed subtle but statistically significant genetic differentiation, indicating that the Adriatic red mullet may group into local, genetically isolated populations. No correlation between geographic distance and genetic differentiation was observed. In addition, the evidence of recent bottlenecks in the Adriatic samples indicates that the observed population subdivision might reflect random local allelic variations, generated by reproductive success, survival rates, or fishing pressure.  相似文献   

18.
The Galápagos petrel (Pterodroma phaeopygia) is endemic to the Galápagos archipelago, where it is known to breed only on five islands. The species has been listed as critically endangered due to habitat deterioration and predation by introduced mammals. Significant morphological and behavioural differences among petrels nesting on different islands suggest that island populations may differ genetically. Furthermore, nesting phenology suggests that genetically differentiated seasonal populations may exist within at least one island. We analysed variation in six microsatellite loci and part of the mitochondrial ATPase 6/8 gene in 206 Galápagos petrels sampled from all five islands. No evidence of genetic structuring within islands was found, although statistical power was low. In contrast, significant differences occurred among island populations. For the microsatellite loci, private alleles occurred at all islands, sometimes at high frequency; global and pairwise estimates of genetic differentiation were all statistically significant; Bayesian analysis of genotypes frequencies provided strong support for three genetic populations; and most estimates of migration between populations did not differ significantly from zero. Only two ATPase haplotypes were found, but the geographic distribution of haplotypes indicated significant differentiation among populations. For conservation purposes, populations from Floreana, Santa Cruz, San Cristóbal and Santiago should be regarded as separate genetic management units. Birds from Isabela appear to be derived recently from the Santiago population, and the population on San Cristóbal appears to be a mixture of birds from other populations. However, considering ecological and behavioural differences among birds from different islands, we recommend that all five populations be protected.  相似文献   

19.
Brontispa longissima is one of the most serious insect pests of coconut in Southeast Asia; it was first discovered on Hainan Island in June 2002. Despite the economic risk associated with this pest, genetic aspects of the invasion process have remained relatively unexplored. Using microsatellite markers, we investigated the population structure, genetic variability and pattern of invasion in various geographic populations. The methodology was based on a modified biotin-capture method. Eight polymorphic microsatellite loci were isolated and characterized for the pest. The allele number per locus varied from 2 to 3 (N = 30). The expected and observed heterozygosities of the eight loci ranged from 0.042 to 0.509 and from 0.042 to 0.963, respectively. Although the frequency of polymorphisms was not very high in this population, the microsatellite loci that were isolated will be useful for investigating the genetic diversity and migration routes of B. longissima populations.  相似文献   

20.
We isolated 16 polymorphic microsatellite loci in the mountain pine beetle (Dendroctonus ponderosae Hopkins) and developed conditions for amplifying these markers in four multiplex reactions. Three to 14 alleles were detected per locus across two sampled populations. Observed and expected heterozygosities ranged from 0.000 to 0.902 and from 0.100 to 0.830, respectively. Three loci deviated from Hardy-Weinberg equilibrium in one sampled population. One of these loci may be sex linked. These markers will be useful in the study of population structure in this important pest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号