首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.  相似文献   

2.
The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule.  相似文献   

3.
Lipid binding of human apolipoprotein A-I (apoA-I) occurs initially through the C-terminal alpha-helices followed by conformational reorganization of the N-terminal helix bundle. This led us to hypothesize that apoA-I has multiple lipid-bound conformations, in which the N-terminal helix bundle adopts either open or closed conformations anchored by the C-terminal domain. To investigate such possible conformations of apoA-I at the surface of a spherical lipid particle, site-specific labeling of the N- and C-terminal helices in apoA-I by N-(1-pyrene)maleimide was employed after substitution of a Cys residue for Val-53 or Phe-229. Neither mutagenesis nor the pyrene labeling caused discernible changes in the lipid-free structure and lipid interaction of apoA-I. Taking advantage of a significant increase in fluorescence when a pyrene-labeled helix is in contact with the lipid surface, we monitored the behaviors of the N- and C-terminal helices upon binding of apoA-I to egg PC small unilamellar vesicles. Comparison of the binding isotherms for pyrene-labeled apoA-I as well as a C-terminal helical peptide suggests that an increase in surface concentration of apoA-I causes dissociation of the N-terminal helix from the surface leaving the C-terminal helix attached. Consistent with this, isothermal titration calorimetry measurements showed that the enthalpy of apoA-I binding to the lipid surface under near saturated conditions is much less exothermic than that for binding at a low surface concentration, indicating the N-terminal helix bundle is out of contact with lipid at high apoA-I surface concentrations. Interestingly, the presence of cholesterol significantly induces the open conformation of the helix bundle. These results provide insight into the multiple lipid-bound conformations that the N-terminal helix bundle of apoA-I can adopt on a lipid or lipoprotein particle, depending upon the availability of space on the surface and the surface composition.  相似文献   

4.
The principal protein of high density lipoprotein (HDL), apolipoprotein (apo) A-I, in the lipid-free state contains two tertiary structure domains comprising an N-terminal helix bundle and a less organized C-terminal domain. It is not known how the properties of these domains modulate the formation and size distribution of apoA-I-containing nascent HDL particles created by ATP-binding cassette transporter A1 (ABCA1)-mediated efflux of cellular phospholipid and cholesterol. To address this issue, proteins corresponding to the two domains of human apoA-I (residues 1–189 and 190–243) and mouse apoA-I (residues 1–186 and 187–240) together with some human/mouse domain hybrids were examined for their abilities to form HDL particles when incubated with either ABCA1-expressing cells or phospholipid multilamellar vesicles. Incubation of human apoA-I with cells gave rise to two sizes of HDL particles (hydrodynamic diameter, 8 and 10 nm), and removal or disruption of the C-terminal domain eliminated the formation of the smaller particle. Variations in apoA-I domain structure and physical properties exerted similar effects on the rates of formation and sizes of HDL particles created by either spontaneous solubilization of phospholipid multilamellar vesicles or the ABCA1-mediated efflux of cellular lipids. It follows that the sizes of nascent HDL particles are determined at the point at which cellular phospholipid and cholesterol are solubilized by apoA-I; apparently, this is the rate-determining step in the overall ABCA1-mediated cellular lipid efflux process. The stability of the apoA-I N-terminal helix bundle domain and the hydrophobicity of the C-terminal domain are important determinants of both nascent HDL particle size and their rate of formation.  相似文献   

5.
Apolipoprotein A-I (apoA-I) accepts cholesterol and phospholipids from ATP-binding cassette transporter A1 (ABCA1)-expressing cells to form high-density lipoprotein (HDL). Human apoA-I has two tertiary structural domains and the C-terminal domain (approximately amino acids 190–243) plays a key role in lipid binding. Although the high lipid affinity region of the C-terminal domain of apoA-I (residues 223–243) is essential for the HDL formation, the function of low lipid affinity region (residues 191–220) remains unclear. To evaluate the role of residues 191–220, we analyzed the structure, lipid binding properties, and HDL formation activity of Δ191–220 apoA-I, in comparison to wild-type and Δ223–243 apoA-I. Although deletion of residues 191–220 has a slight effect on the tertiary structure of apoA-I, the Δ191–220 variant showed intermediate behavior between wild-type and Δ223–243 regarding the formation of hydrophobic sites and lipid interaction through the C-terminal domain. Physicochemical analysis demonstrated that defective lipid binding of Δ191–220 apoA-I is due to the decreased ability to form α-helix structure which provides the energetic source for lipid binding. In addition, the ability to form HDL particles in vitro and induce cholesterol efflux from ABCA1-expressing cells of Δ191–220 apoA-I was also intermediate between wild-type and Δ223–243 apoA-I. These results suggest that despite possessing low lipid affinity, residues 191–220 play a role in enhancing the ability of apoA-I to bind to and solubilize lipids by forming α-helix upon lipid interaction. Our results demonstrate that the combination of low lipid affinity region and high lipid affinity region of apoA-I is required for efficient ABCA1-dependent HDL formation.  相似文献   

6.
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).  相似文献   

7.
Apolipoprotein A-I (apoA-I) is the principal protein of high density lipoprotein particles (HDL). ApoA-I contains a globular N-terminal domain (residues 1-43) and a lipid-binding C-terminal domain (residues 44-243). Here we propose a detailed model for the smallest discoidal HDL, consisting of two apoA-I molecules wrapped beltwise around a small patch of bilayer containing 160 lipid molecules. The C-terminal domain of each monomer is ringlike, a curved, planar amphipathic alpha helix with an average of 3.67 residues per turn, and with the hydrophobic surface curved toward the lipids. We have explored all possible geometries for forming the dimer of stacked rings, subject to the hypothesis that the optimal geometry will maximize intermolecular salt bridge interactions. The resulting model is an antiparallel arrangement with an alignment matching that of the (nonplanar) crystal structure of lipid-free apoA-I.  相似文献   

8.
Interaction of apolipoproteins (apo) with lipid surfaces plays crucial roles in lipoprotein metabolism and cholesterol homeostasis. To elucidate the thermodynamics of binding of apoA-I to lipid, we used lipid emulsions composed of triolein (TO) and egg phosphatidylcholine (PC) as lipoprotein models. Determination of the level of binding of wild-type (WT) apoA-I and some deletion mutants to large (120 nm diameter; LEM) and small (35 nm diameter; SEM) emulsions indicated that N-terminal (residues 44-65) and C-terminal (residues 190-243 and 223-243) deletions have large effects on lipid interaction, whereas deletion of the central region (residues 123-166) has little effect. Substitution of amino acids at either L230 or L230, L233, and Y236 with proline residues also decreases the level of binding, indicating that an alpha-helix conformation in this C-terminal region is required for efficient lipid binding. Calorimetry showed that binding of WT apoA-I to SEM generates endothermic heat (DeltaH approximately 30 kcal/mol) in contrast to the exothermic heat (ca. -85 kcal/mol) generated upon binding to LEM and egg PC small unilamellar vesicles (SUV). This exothermic heat arises from an approximately 25% increase in alpha-helix content, and it drives the binding of apoA-I to LEM and SUV. There is a similar increase in alpha-helix content of apoA-I upon binding to either SEM or SUV, but the binding of apoA-I to SEM is an entropy-driven process. These results suggest that the presence of a core triglyceride modifies the highly curved SEM surface packing and thereby the thermodynamics of apoA-I binding in a manner that compensates for the exothermic heat generated by alpha-helix formation.  相似文献   

9.
apoA-I plays important structural and functional roles in reverse cholesterol transport. We have described the molecular structure of the N-terminal domain, Δ(185-243) by X-ray crystallography. To understand the role of the C-terminal domain, constructs with sequential elongation of Δ(185-243), by increments of 11-residue sequence repeats were studied and compared with Δ(185-243) and WT apoA-I. Constructs up to residue 230 showed progressively decreased percent α-helix with similar numbers of helical residues, similar detergent and lipid binding affinity, and exposed hydrophobic surface. These observations suggest that the C-terminal domain is unstructured with the exception of the last 11-residue repeat (H10B). Similar monomer-dimer equilibrium suggests that the H10B region is responsible for nonspecific aggregation. Cholesterol efflux progressively increased with elongation up to ∼60% of full-length apoA-I in the absence of the H10B. In summary, the sequential repeats in the C-terminal domain are probably unstructured with the exception of H10B. This segment appears to be responsible for initiation of lipid binding and aggregation, as well as cholesterol efflux, and thus plays a vital role during HDL formation. Based on these observations and the Δ(185-243) crystal structure, we propose a lipid-free apoA-I structural model in solution and update the mechanism of HDL biogenesis.  相似文献   

10.
We examined the effects of apolipoprotein E (apoE) domain structure and polymorphism on the kinetics of solubilization (clearance) of dimyristoyl-phosphatidylcholine multilamellar vesicles. This second order reaction consisted of two simultaneous kinetic phases; it also exhibited saturable kinetics when the apolipoprotein concentration was increased at a constant lipid concentration. Rigid connections between alpha-helices in the 4-helix bundle formed by the 22 kDa N-terminal domain of apoE reduced the reaction rate. In contrast, the more flexible interhelical connections in apoA-I and the 10 kDa C-terminal domain of apoE promoted rapid solubilization of dimyristoyl-phosphatidylcholine (DMPC) multilamellar vesicles (mLV). Full-length apoE-3 reacted at about half the rate of the C-terminal domain alone. This decrease occurred because the hinge region probably decreased the interhelical flexibility of the 10 kDa domain and because both domains are conformationally restricted when covalently linked. Furthermore, the mLV surface affinities and reaction rates of the N-terminal domain fragments of the three common apoE isoforms tended to vary inversely with the stabilities of these fragments. These results confirm the importance of apoE's structure on the kinetics of lipid interaction. They suggest that flexibility in an apolipoprotein molecule increases the time-averaged exposure of hydrophobic surface area, thereby increasing the rate of phospholipid solubilization.  相似文献   

11.
Apolipoprotein A-I (apoA-I) has a great conformational flexibility to exist in lipid-free, lipid-poor, and lipid-bound states during lipid metabolism. To address the lipid binding and the dynamic desorption behavior of apoA-I at lipoprotein surfaces, apoA-I, Δ(185-243)apoA-I, and Δ(1-59)(185-243)apoA-I were studied at triolein/water and phosphatidylcholine/triolein/water interfaces with special attention to surface pressure. All three proteins are surface active to both interfaces lowering the interfacial tension and thus increasing the surface pressure to modify the interfaces. Δ(185-243)apoA-I adsorbs much more slowly and lowers the interfacial tension less than full-length apoA-I, confirming that the C-terminal domain (residues 185-243) initiates the lipid binding. Δ(1-59)(185-243)apoA-I binds more rapidly and lowers the interfacial tension more than Δ(185-243)apoA-I, suggesting that destabilizing the N-terminal α-helical bundle (residues 1-185) restores lipid binding. The three proteins desorb from both interfaces at different surface pressures revealing that different domains of apoA-I possess different lipid affinity. Δ(1-59)(185-243)apoA-I desorbs at lower pressures compared with apoA-I and Δ(185-243)apoA-I indicating that it is missing a strong lipid association motif. We propose that during lipoprotein remodeling, surface pressure mediates the adsorption and partial or full desorption of apoA-I allowing it to exchange among different lipoproteins and adopt various conformations to facilitate its multiple functions.  相似文献   

12.
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.  相似文献   

13.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids.  相似文献   

14.
Apolipoprotein (apo) A-I is thought to undergo a conformational change during lipid association that results in the transition of random coil to alpha-helix. Using a series of deletion mutants lacking different regions along the molecule, we examined the contribution of alpha-helix formation in apoA-I to the binding to egg phosphatidylcholine (PC) small unilamellar vesicles (SUV). Binding isotherms determined by gel filtration showed that apoA-I binds to SUV with high affinity and deletions in the C-terminal region markedly decrease the affinity. Circular dichroism measurements demonstrated that binding to SUV led to an increase in alpha-helix content, but the helix content was somewhat less than in reconstituted discoidal PC.apoA-I complexes for all apoA-I variants, suggesting that the helical structure of apoA-I on SUV is different from that in discs. Isothermal titration calorimetry showed that the binding of apoA-I to SUV is accompanied by a large exothermic heat and deletions in the C-terminal regions greatly decrease the heat. Analysis of the rate of release of heat on binding, as well as the kinetics of quenching of tryptophan fluorescence by brominated PC, indicated that the opening of the N-terminal helix bundle is a rate-limiting step in apoA-I binding to the SUV surface. Significantly, the correlation of thermodynamic parameters of binding with the increase in the number of helical residues revealed that the contribution of alpha-helix formation upon lipid binding to the enthalpy and the free energy of the binding of apoA-I is -1.1 and -0.04 kcal/mol per residue, respectively. These results indicate that alpha-helix formation, especially in the C-terminal regions, provides the energetic source for high affinity binding of apoA-I to lipids.  相似文献   

15.
Heat labile enterotoxin from enterotoxigenic Escherichia coli is similar to cholera toxin (CT) and is a leading cause of diarrhea in developing countries. It consists of an enzymatically active A subunit (LTA) and a carrier pentameric B subunit (LTB). In the current study, we evaluated the importance of the N-terminal region of LTB by mutation analysis. Deletion of the glutamine (ΔQ3) residue and a substitution mutation E7G in the α1 helix region led to defects in LTB protein secretion. Deletion of the proline residue (ΔP2) caused a decrease in α helicity. The ΔP2 mutant affected GM1 ganglioside receptor binding activity without affecting LTB pentamer formation. Upon refolding/reassembly, the ΔP2 mutant showed defective biological activity. The single substitution mutation (E7D) strengthened the helix, imparting structural stability and thereby improved the GM1 ganglioside receptor binding activity. Our results demonstrate the important role of N-terminal α1 helix in maintaining the structural stability and the integrity of GM1 ganglioside receptor binding activity.  相似文献   

16.
Apolipoprotein A-I: structure-function relationships   总被引:5,自引:0,他引:5  
The inverse relationship between high density lipoprotein (HDL) plasma levels and coronary heart disease has been attributed to the role that HDL and its major constituent, apolipoprotein A-I (apoA-I), play in reverse cholesterol transport (RCT). The efficiency of RCT depends on the specific ability of apoA-I to promote cellular cholesterol efflux, bind lipids, activate lecithin:cholesterol acyltransferase (LCAT), and form mature HDL that interact with specific receptors and lipid transfer proteins. From the intensive analysis of apoA-I secondary structure has emerged our current understanding of its different classes of amphipathic alpha-helices, which control lipid-binding specificity. The main challenge now is to define apoA-I tertiary structure in its lipid-free and lipid-bound forms. Two models are considered for discoidal lipoproteins formed by association of two apoA-I with phospholipids. In the first or picket fence model, each apoA-I wraps around the disc with antiparallel adjacent alpha-helices and with little intermolecular interactions. In the second or belt model, two antiparallel apoA-I are paired by their C-terminal alpha-helices, wrap around the lipoprotein, and are stabilized by multiple intermolecular interactions. While recent evidence supports the belt model, other models, including hybrid models, cannot be excluded. ApoA-I alpha-helices control lipid binding and association with varying levels of lipids. The N-terminal helix 44-65 and the C-terminal helix 210-241 are recognized as important for the initial association with lipids. In the central domain, helix 100-121 and, to a lesser extent, helix 122-143, are also very important for lipid binding and the formation of mature HDL, whereas helices between residues 144 and 186 contribute little. The LCAT activation domain has now been clearly assigned to helix 144-165 with secondary contribution by helix 166-186. The lower lipid binding affinity of the region 144-186 may be important to the activation mechanism allowing displacement of these apoA-I helices by LCAT and presentation of the lipid substrates. No specific sequence has been found that affects diffusional efflux to lipid-bound apoA-I. In contrast, the C-terminal helices, known to be important for lipid binding and maintenance of HDL in circulation, are also involved in the interaction of lipid-free apoA-I with macrophages and specific lipid efflux. While much progress has been made, other aspects of apoA-I structure-function relationships still need to be studied, particularly its lipoprotein topology and its interaction with other enzymes, lipid transfer proteins and receptors important for HDL metabolism.  相似文献   

17.
A number of naturally occurring mutations of apolipoprotein (apo) A-I, the major protein of HDL, are known to be associated with hereditary amyloidosis and atherosclerosis. Here, we examined the effects of the G26R point mutation in apoA-I (apoA-IIowa) on the structure, stability, and aggregation propensity to form amyloid fibril of full-length apoA-I and the N-terminal fragment of apoA-I. Circular dichroism and fluorescence measurements demonstrated that the G26R mutation destabilizes the N-terminal helix bundle domain of full-length protein, leading to increased hydrophobic surface exposure, whereas it has no effect on the initial structure of the N-terminal 1–83 fragment, which is predominantly a random coil structure. Upon incubation for extended periods at neutral pH, the N-terminal 1–83 variants undergo a conformational change to β-sheet-rich structure with a great increase in thioflavin T fluorescence, whereas no structural change is observed in full-length proteins. Comparison of fibril-forming propensity among substituted mutants at Gly-26 position of 1–83 fragments demonstrated that the G26R mutation enhances the nucleation step of fibril formation, whereas G26K and G26E mutations have small or inhibiting effects on the formation of fibrils. These fibrils of the 1–83 variants have long and straight morphology as revealed by atomic force microscopy and exhibited significant toxicity with HEK293 cells. Our results indicate dual critical roles of the arginine residue at position 26 in apoA-IIowa: destabilization of the N-terminal helix bundle structure in full-length protein and enhancement of amyloid fibril formation by the N-terminal 1–83 fragment.  相似文献   

18.
The contribution of the amphipathic alpha-helices of apoA-I toward lipid efflux from human skin fibroblasts and macrophage was examined. Four apoA-I mutants were designed, each by deletion of a pair of predicted adjacent helices. Three mutants lacked two consecutive central alpha-helices [Delta(100-143), Delta(122-165), and Delta(144-186)], whereas the final mutant lacked the C-terminal domain [Delta(187-243)]. When compared to recombinant wild-type apoA-I and mutants with central domain deletions, Delta(187-243) exhibited a marked reduction in its ability to promote either cholesterol or phospholipid efflux from THP-1 macrophages. This mutant also demonstrated a decreased ability to bind lipids and to form lipoprotein complexes. In contrast, the four mutants and apoA-I equally supported cholesterol efflux from fibroblasts, albeit with a reduced capacity when compared to macrophages. Delta(187-243) bound poorly to the macrophage cell surface when compared to apoA-I, and competitive binding studies with the central domain and C-terminal deletions mutants showed that only Delta(187-243) did not compete effectively with [(125)I]apoA-I. Omission of PMA during cholesterol loading enhanced cholesterol efflux to both apoA-I (1.5-fold) and the C-terminal deletion mutant (2.5-fold). Inclusion of the Sandoz ACAT inhibitor (58-035) during loading and, in the absence of PMA, increased and equalized cholesterol efflux to apoA-I and Delta(187-243). Surprisingly, omission of PMA during cholesterol loading had minimal effects on the binding of apoA-I or Delta(187-243) to the THP-1 cell surface. Overall, these results show that cholesterol efflux from cells such as fibroblasts does not require any specific sequence between residues 100 and 243 of apoA-I. In contrast, optimal cholesterol efflux in macrophages requires binding of the C-terminal domain of apoA-I to a cell surface-binding site and the subsequent translocation of intracellular cholesterol to an efflux-competent pool.  相似文献   

19.
20.
Apolipoprotein A-I (apoA-I) Nichinan, a naturally occurring variant with ΔE235 in the C terminus, is associated with low plasma HDL levels. Here, we investigated the tertiary structure, lipid-binding properties, and ability to induce cellular cholesterol efflux of apoA-I Nichinan and its C-terminal peptide. Thermal and chemical denaturation experiments demonstrated that the ΔE235 mutation decreased the protein stability compared with wild type (WT). ApoA-I Nichinan exhibited capabilities to bind to or solubilize lipid vesicles that are intermediate to that of WT and a L230P/L233P/Y236P variant in which the C-terminal α-helix folding is completely disrupted and forms relatively larger and unstable discoidal complexes, indicating that perturbation of the C-terminal α-helical structure by the ΔE235 mutation leads to reduced lipid binding. Supporting this, apoA-I 209-241/ΔE235 peptide showed significantly decreased ability to form α-helix both in the lipid-free and lipid-bound states, and reduced efficiency to solubilize vesicles. In addition, both apoA-I Nichinan and its C-terminal peptide exhibited reduced activity in ABCA1-mediated cellular cholesterol efflux. Thus, the disruption of the ability of the C-terminal region to form α-helix caused by the E235 deletion appears to be the important determinant of impaired lipid binding and cholesterol efflux ability and, consequently, the low plasma HDL levels of apoA-I Nichinan probands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号