首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The timing and effectiveness of pollinator visitation to flowers is an important factor influencing mating patterns and reproductive success. Multiple pollinator probes to a flower may increase both the quantity and genetic diversity of progeny, especially if single probes deposit insufficient pollen for maximal seed set or if the interval between probes is brief. When pollen carryover is limited, sequential pollen loads may also differ markedly in sire representation. We hypothesized that these conditions help explain high levels of multiple paternity in Mimulus ringens fruits. We documented all bee visits to individual flowers, quantified resulting seed set, and determined paternity for 20 seeds per fruit. Most (76%) flowers received multiple probes, and the interval between probes was usually <30 min. Flowers probed multiple times produced 44% more seeds than flowers probed once. All fruits were multiply sired. Flowers receiving a single probe averaged 3.12 outcross sires per fruit, indicating that single probes deposit pollen from several donors. Multiple paternity was even greater after three or more probes (4.92 outcross sires), demonstrating that sequential visits bring pollen from donors not represented in the initial probe.  相似文献   

2.

Background and Aims

The number of flowers blooming simultaneously on a plant may have profound consequences for reproductive success. Large floral displays often attract more pollinator visits, increasing outcross pollen receipt. However, pollinators frequently probe more flowers in sequence on large displays, potentially increasing self-pollination and reducing pollen export per flower. To better understand how floral display size influences male and female fitness, we manipulated display phenotypes and then used paternity analysis to quantify siring success and selfing rates.

Methods

To facilitate unambiguous assignment of paternity, we established four replicate (cloned) arrays of Mimulus ringens, each consisting of genets with unique combinations of homozygous marker genotypes. In each array, we trimmed displays to two, four, eight or 16 flowers. When fruits ripened, we counted the number of seeds per fruit and assigned paternity to 1935 progeny.

Key Results

Siring success per flower declined sharply with increasing display size, while female success per flower did not vary with display. The rate of self-fertilization increased for large floral displays, but siring losses due to geitonogamous pollen discounting were much greater than siring gains through increased self-fertilization. As display size increased, each additional seed sired through geitonogamous self-pollination was associated with a loss of 9·7 seeds sired through outcrossing.

Conclusions

Although total fitness increased with floral display size, the marginal return on each additional flower declined steadily as display size increased. Therefore, a plant could maximize fitness by producing small displays over a long flowering period, rather than large displays over a brief flowering period.  相似文献   

3.
Several studies have demonstrated, using controlled pollinations, that the number and identity of pollen grains deposited onto a flower's stigma affect the reproductive success of plants. However, few studies have shown this relationship under conditions of natural pollination. Using the tropical dry forest tree Pachira quinata, we evaluated the relationship between the number of microgametophytes per pistil and the number of sires with respect to the production of fruits and seeds in a natural population of Pachira quinata. Our study demonstrates that fruit and seed production are directly related to the number of microgametophytes per pistil in natural populations of P. quinata. Only 6% of the marked flowers developed into mature fruits and 10% of the marked flowers initiated fruits but later aborted them. A mean of 23 pollen grains were required to produce a seed. Flowers with >400 pollen grains on the stigma always developed into mature fruits, whereas flowers that received <200 grains never matured fruits. Half of the pollen grains transferred to a flower stigma germinated and developed pollen tubes to the base of the style. The number of pollen grains on a stigma explained 34% of the variation in seed number per fruit, and the number of seeds produced per fruit is positively correlated with the size of the seeds. The population of P. quinata studied is predominantly outcrossing, and seeds within fruits are sired by one or a few donors. The total seed crop within trees was sired by three to five donors. Our study examined the implications of the variation in size of microgametophyte loads per pistil with respect to the breeding system and the paternity of progeny under natural conditions. The competitive ability of pollen and pollen tube attrition are important factors regulating fruit production in P. quinata.  相似文献   

4.
Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants'' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female''s point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so.  相似文献   

5.
Two different mechanisms can result in multiple paternity within fruits: deposition of a mixed pollen load due to carryover of pollen from flower to flower and multiple pollinator visits in close succession. I investigated the extent of multiple paternity within fruits of Ipompsis aggregata containing from 2 to 14 seeds. A paternity analysis based on ten polymorphic isozyme markers revealed multiple paternity in a minimum of 68% (based on simple paternity exclusion) and up to 100% (based on identification of the most likely father) of the multiseeded fruits. The estimated number of fathers increased with the number of seeds in a fruit, with an average of four sires, and up to nine sires, represented in a single fruit. To explore whether this level of multiple paternity could be explained solely by simultaneous deposition of a mixed pollen load, I constructed a computer simulation model based on previous measurements of movement patterns and pollen carryover by the hummingbird pollinators. Model predictions provided a good match to observed values for number of sires per fruit. Thus, the extensive pollen carryover in this species and consequent mixed pollen loads can explain the high levels of multiple paternity in natural populations.  相似文献   

6.
The floral architecture and phenology of the tree species Albizia julibrissin (Fabaceae) offer the potential for flowers within inflorescences to share common pollen donors. Patterns of paternity within individual tree crowns may differ among isolated individuals and those in populations due to differences in pollinator foraging behavior. To determine how genetic diversity is partitioned within individual seed pools and whether these patterns differ among isolated and population trees, we obtained all fruits from three inflorescences from four clusters from three isolated trees and from three population trees in Athens, Georgia. We assayed 14 polymorphic allozymes to genotype all progeny within singly sired fruits to determine the multilocus genotype of each fruit's pollen donor. Inflorescences had multiple pollen donors, but simulation analyses revealed that redundancy of pollen donors tended to be more likely within inflorescences than randomly across the crown. Analysis of genetic and genotypic diversity indicated that individual maternal trees received pollen from many donors in uneven frequencies. Results suggest that isolated trees receive pollen from slightly fewer pollen donors and experience more within-plant pollinator movement than trees in populations. However, isolated trees receive qualitatively similar pollen from many sources, suggesting that these trees are not effectively isolated and that pollen moves long distances in this species.  相似文献   

7.

Background and Aims

Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen. However, since pollen carryover in this species is limited, receipt of self pollen should increase rapidly for later flowers. Here the first direct experimental test of this hypothesis is described.

Methods

In order to link floral visitation sequences with selfing rates of individual flowers, replicate linear arrays were established, each composed of plants with unique genetic markers. This facilitated unambiguous assignment of paternity to all sampled progeny. A single wild bumble-bee was permitted to forage on each linear array, recording the order of floral visits on each display. Once fruits had matured, 120 fruits were harvested (four flowers from each of five floral displays in each of six arrays). Twenty-five seedlings from each fruit were genotyped and paternity was unambiguously assigned to all 3000 genotyped progeny.

Key Results

The order of pollinator probes on Mimulus floral displays strongly and significantly influenced selfing rates of individual fruits. Mean selfing rates increased from 21 % for initial probes to 78 % for the fourth flower probed on each display.

Conclusions

Striking among-flower differences in selfing rate result from increased deposition of geitonogamous (among-flower, within-display) self pollen as bumble-bees probe consecutive flowers on each floral display. The resulting heterogeneity in the genetic composition of sibships may influence seedling competition and the expression of inbreeding depression.Key words: Autogamy, bee, Bombus fervidus, floral display, geitonogamy, mating system, monkeyflower, Mimulus ringens, paternity analysis, pollen carryover, pollinator visitation sequence, self-fertilization  相似文献   

8.
After pollen arrives on a stigma, the paternity of seeds may be influenced by microgametophyte competition, maternal choice, genetic complementation between parents, and embryo competition. While microgametophyte competition has been well accepted, the other mechanisms are more difficult to demonstrate, and their effects are often confounded. Here, wild radish plants were pollinated with single and mixed pollen loads, and some plants were stressed such that reproduction was reduced. Effects of pollen donors, maternal families, maternal × paternal interaction, pollen donor number, and stress on fruit abortion, seed number per fruit, seed weight, and total seed weight per fruit were measured. Maternal-plant × pollen-donor interaction effects were found for all variables, indicating that genetic complementation or maternal choice occurred. Values of the components of reproduction were generally higher for multiply sired fruits than for singly sired fruits, indicating that either competition among embryos changed under multiple paternity or maternal choice for multiply sired fruits occurred. Finally, when maternal plants were stressed, the components of reproduction were more strongly affected by seed and fruit paternity. This result indicates that either competitive regimes among embryos were affected by stress or maternal plants become more selective under stress. In both cases where embryo competition might have been an explanation of the results, variation in seed weight within fruits was unaffected, suggesting that competitive regimes were unchanged. Clearly, mechanisms in addition to microgametophyte competition are important in sorting the pollen that arrives on stigmas of wild radish. These data suggest that maternal choice is likely to be important. In addition, these processes are likely to occur in the field, since the effects are stronger in stressed than in control plants.  相似文献   

9.
Although multiple paternity has been documented for a large number of species, detailed studies of variation in multiple paternity among broods, individuals, and populations are lacking. We measured the extent of multiple paternity in the multi-seeded fruits of wild radish, Raphanus sativus, from three natural populations in southern California. Every parent sampled produced one or more multiply sired fruits, and, in most plants, over half the fruits analyzed proved to be multiply sired. In all, 75% of the 388 multi-seeded fruits analyzed showed multiple paternity. Among these fruits, the minimum number of paternal donors ranged from one to four, with a mode of two paternal parents. The fraction of multiply sired fruits varied from 68–85% among populations and from 40–100% among plants. Plants were heterogeneous for multiple paternity in the 1984 population. A significant positive correlation between multiple paternity and number of fruits per plant suggests that plants preferentially abort single sired fruits. The total number of mates that could be detected for entire plants ranged from 3–14 with a mode of seven. Multiple paternity is likely to be important in other species producing multi-seeded fruits.  相似文献   

10.
For sexual selection to be important in plants, it must occur at pollen load sizes typical of field populations. However, studies of the impact of pollen load size on pollen competition have given mixed results, perhaps because so few of these studies directly examined the outcome of mating when pollen load size was varied. We asked whether seed paternity after mixed pollination of wild radish was affected by pollen load sizes ranging from 22 to 220 pollen grains per stigma. We examined the seed siring abilities of 12 pollen donors across 11 maternal plants. Seed paternity was statistically indistinguishable across the pollen load sizes even though, overall, the pollen donors sired different numbers of seeds. This lack of effect of pollen load size on seed paternity may have occurred because fruit abortion and early abortion or failure of fertilization of seeds increased as load size decreased. Thus, failures of fruits and seeds sired by poorer pollen donors may keep seed paternity constant across pollen load sizes.  相似文献   

11.
Flowers fertilized by multiple fathers may be expected to produce heavier seeds than those fertilized by a single father. However, the adaptive mechanisms leading to such differences remain unclear, and the evidence inconsistent. Here, we first review the different hypotheses predicting an increase in seed mass when multiple paternity occurs. We show that distinguishing between these hypotheses requires information about average seed mass, but also about within‐fruit variance in seed mass, bias in siring success among pollen donors, and whether siring success and seed mass are correlated. We then report the results of an experiment on Dalechampia scandens (Euphorbiaceae), assessing these critical variables in conjunction with a comparison of seed mass resulting from crosses with single vs. multiple pollen donors. Siring success differed among males when competing for fertilization, but average seed mass was not affected by the number of fathers. Furthermore, paternal identity explained only 3.8% of the variance in seed mass, and siring success was not correlated with the mass of the seeds produced. Finally, within‐infructescence variance in seed mass was not affected by the number of fathers. These results suggest that neither differential allocation nor sibling rivalry has any effect on the average mass of seeds in multiply sired fruits in D. scandens. Overall, the limited paternal effects observed in most studies and the possibility of diversification bet hedging among flowers (but not within flowers), suggest that multiple paternity within fruits or infructescence is unlikely to affect seed mass in a large number of angiosperm species.  相似文献   

12.

Background and Aims

Competition among genetically different pollen donors within one recipient flower may play an important role in plant populations, increasing offspring genetic diversity and vigour. However, under field conditions stochastic pollen arrival times may result in disproportionate fertilization success of the first-arriving pollen, even to the detriment of the recipient plant''s and offspring fitness. It is therefore critical to evaluate the relative importance of arrival times of pollen from different donors in determining siring success.

Methods

Hand pollinations and genetic markers were used to investigate experimentally the effect of pollination timing on seed paternity, seed mass and stigmatic wilting in the the dioecious plant Silene latifolia. In this species, high prevalence of multiply-sired fruits in natural populations suggests that competition among different donors may often take place (at fertilization or during seed development); however, the role of variation due to pollen arrival times is not known.

Key Results

First-arriving pollen sired significantly more seeds than later-arriving pollen. This advantage was expressed already before the first pollen tubes could reach the ovary. Simultaneously with pollen tube growth, the stigmatic papillae wilted visibly. Individual seeds were heavier in fruits where one donor sired most seeds than in fruits where both donors had more even paternity shares.

Conclusions

In field populations of S. latifolia, fruits are often multiply-sired. Because later-arriving pollen had decreased chances of fertilizing the ovules, this implies that open-pollinated flowers often benefit from pollen carry-over or pollinator visits within short time intervals, which may contribute to increase offspring genetic diversity and fitness.Key words: Reproduction, reproductive success, pollen, siring success, microsatellite DNA, paternity, pollen tube growth, seed mass, Silene alba, stigma wilting  相似文献   

13.
In animal-pollinated plants, two factors affecting pollen flow and seed production are changes in floral display and the availability of compatible mates. Changes in floral display may affect the number of pollinator visits and the availability of compatible mates will affect the probability of legitimate pollination and seed production. Distyly is a floral polymorphism where long-styled (pin) and short-styled (thrum) floral morphs occur among different individuals. Distylous plants frequently exhibit self and intra-morph incompatibility. Therefore changes in morph abundance directly affect the arrival of compatible pollen to the stigmas. Floral morph by itself may also affect female reproductive success because floral morphs may display differences in seed production. We explored the effects of floral display, availability of neighboring compatible mates, and floral morph on seed production in the distylous herb ARCYTOPHYLLUM LAVARUM. We found that floral display does not affect the mean number of seeds produced per flower. There is also no effect of the proportion of neighboring legitimate pollen donors on seed production in pin or thrum flowers. However, floral morphs differed in their female reproductive success and the thrum morph produced more seeds. Hand pollination experiments suggest that differences in seed production between morphs are the result of pollen limitation. Future research will elucidate if the higher seed production in thrum flowers is a consequence of higher availability of pollen donors in the population, or higher efficiency of the pin morph as pollen donor.  相似文献   

14.
If pollen donors are equally effective at siring seeds, the presence of equal proportions of pollen from two pollen donors on a stigma will lead to equal proportions of seeds sired by each pollen donor. Variation in germination rates, pollen-tube growth, and embryo viability may cause one donor to sire more seed than another. We looked for differential donor success in the field by simultaneously applying equal amounts of pollen from two pollen donors. We simultaneously applied equal amounts of self and outcross pollen to receptive stigmas and simultaneously applied pollen from two donors at different physical distances from the recipient. Following simultaneous application of self and outcross pollen, significantly more of the seeds were sired by outcross pollen donors. Seed set following simultaneous application of two outcross donors was also nonrandom. Pollen donors from 100 m were more likely to sire seeds when competing with pollen from plants nearby (1 m). To determine whether pollen-tube growth rates were responsible for these patterns of paternity, we varied the timing of deposition of outcross pollen allowing self pollen tubes a head start on the stigma. Outcross pollen was applied 3 or 24 h after self pollen. In spite of this time delay, the majority of the seeds were again sired by outcross pollen. There was no significant difference in the amount of seeds sired by self pollen between the two delay treatments. This result suggests that mechanisms operating after ovule fertilization may contribute to the discordance between the proportions of the pollen present and the proportions of seeds sired.  相似文献   

15.
Flexistyly is a recently documented stylar polymorphism involving both spatial and temporal segregation of sex roles within hermaphroditic flowers. Using the experimental manipulation of stigma movement in self-compatible Alpinia mutica, we tested the hypothesis that selection for reducing interference between male and female function drives the evolution and/or maintenance of stigma movement. In experimental arrays, anaflexistylous (protogynous) flowers served as pollen donors competing for mating opportunities on cataflexistylous (protandrous) flowers. The pollen donors were either manipulated so their stigmas could not move or were left intact, and their success was determined using allozymes to assess the paternity of recipient seeds. We found that manipulated flowers sired a significantly smaller proportion of seeds, showing that stigma movement in unmanipulated plants increased male fitness. This result was strongest under conditions in which pollen competition was expected to be highest, specifically when pollinators visited multiple donor plants before visiting recipient flowers.  相似文献   

16.
The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross‐pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self‐ and cross‐pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross‐pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen ( 2017 ) examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self‐incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self‐ and cross‐pollination paradigm. Rhodes et al. ( 2017 ) demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics.  相似文献   

17.
The occurrence and extent of multiple paternity is an important component of variation in plant mating dynamics. However, links between pollinator activity and multiple paternity are generally lacking, especially for plant species that attract functionally diverse floral visitors. In this study, we separated the influence of two functionally distinct floral visitors (hawkmoths and solitary bees) and characterized their impacts on multiple paternity in a self‐incompatible, annual forb, Oenothera harringtonii (Onagraceae). We also situated pollinator‐mediated effects in a spatial context by linking variation in multiple paternity to variation in plant spatial isolation. We documented pronounced differences in the number of paternal sires as function of pollinator identity: on average, the primary pollinator (hawkmoths) facilitated mating with nearly twice as many pollen donors relative to the secondary pollinator (solitary bees). This effect was consistent for both isolated and nonisolated individuals, but spatial isolation imposed pronounced reductions on multiple paternity regardless of pollinator identity. Considering that pollinator abundance and pollen dispersal distance did not vary significantly with pollinator identity, we attribute variation in realized mating dynamics primarily to differences in pollinator morphology and behaviour as opposed to pollinator abundance or mating incompatibility arising from underlying spatial genetic structure. Our findings demonstrate that functionally distinct pollinators can have strongly divergent effects on polyandry in plants and further suggest that both pollinator identity and spatial heterogeneity have important roles in plant mating dynamics.  相似文献   

18.
Flowers of Weigela middendorffiana change the color from yellow to red. The previous study revealed that red-phase flowers no longer have sexual function and nectar, and bumblebees selectively visit yellow-phase flowers. The present study examined how retaining color-changed flowers can regulate the foraging behavior of bumblebees and pollen transport among flowers within (geitonogamous pollination) and between (outcrossing pollination) plants and how the behavior is influenced by display size (i.e., number of functional flowers) and visitation frequency. The visitation frequencies of bumblebees to plants and successive flower probes within plants were observed in the field using plants whose flower number and composition of the two color-phase flowers had been manipulated. To evaluate pollination efficiency over multiple pollinator visits, a pollen transport model was constructed based on the observed bumblebee behavior. In the simulation, three flowering patterns associated with display size and existence of color-changed flowers were postulated as follows: Type 1, large display (100 functional flowers) and no retention of color-changed flowers; Type 2, small display (50 functional flowers) and retention of color-changed flowers (50 old flowers), and; Type 3, large display (100 functional flowers) and retention of color-changed flowers (100 old flowers). Color-changed flowers did not contribute to increasing bumblebee attraction at a distance but reduced the number of successive flower probes within plants. Comparisons of pollen transfer between Types 1 and 3 revealed that the retention of color-changed flowers did not influence the total amount of pollen exported when pollinator visits were abundant (>100 visits) but decreased geitonogamous pollination. Comparisons between Types 2 and 3 revealed that the discouragement effect of floral color change on successive probes accelerated in plants with a large display size. Overall, the floral color change strategy contributed to reduce geitonogamous pollination, but its effectiveness was highly sensitive to display size and pollinator frequency.  相似文献   

19.
慈姑花的开放式样及其花粉流   总被引:3,自引:0,他引:3  
对一野生慈姑(SagitariatrifoliaL.)居群的性表达状态及其花粉流散布规律进行了观测。慈姑雌雄同株,单株雄花数是雌花数的3.6倍。雌雄花单花期均为1d,但二者开放式样不同。尽管雌花的数目较少,但在1d内开放较多的花,其花的开放速率比雄花快。在居群水平上表现出雌雄花比例随时间大幅度波动。在传粉者进行的2612次访花活动中,传粉者表现出偏“雌性”访问,对每朵雌花的访问是雄花的1.4倍。用番红染色法标记慈姑的花粉运动表明,花的不同开放式样影响花粉流的散布。当雄花数占高比例时,花粉主要在邻近的个体间散布;而雄花的比例较低、雌花相对较多时,花粉远距离散布的强度加大。  相似文献   

20.
Pollinator foraging patterns and the dynamics of pollen transport influence the quality and diversity of flowering plant mating opportunities. For species pollinated by grooming pollinators, such as bees, the amount of pollen carried between a donor flower and potential recipient flowers depends on how grooming influences pollen transfer. To investigate the relationship between grooming and pollen‐mediated gene dispersal, we studied bumblebee (Bombus fervidus) foraging behavior and resulting gene dispersal in linear arrays of Mimulus ringens. Each of the 14 plants in an array had a unique multilocus genotype, facilitating unambiguous assignment of paternity to 1050 progeny. Each plant was trimmed to a single flower so that pollinator movements could be linked directly to resulting gene dispersal patterns. Pollen‐mediated gene dispersal was very limited. More than 95% of the seeds sired by a donor flower were distributed over the first three recipient flowers in the visitation sequence. However, seeds were occasionally sired on flowers visited later in the pollinator's floral visitation sequence. Intensive grooming immediately following pollen removal from a donor flower significantly increased the decay rate of the donor flower's gene dispersal curve. These results suggest that the frequency and relative intensity of grooming can have significant effects on patterns of pollen‐mediated gene dispersal from individual pollen donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号