共查询到20条相似文献,搜索用时 13 毫秒
1.
NH Patel 《Development (Cambridge, England)》2012,139(15):2637-2638
2.
Hemichordates are a deuterostome phylum, the sister group to echinoderms, and closely related to chordates. They have thus been used to gain insights into the origins of deuterostome and chordate body plans. Developmental studies of this group have a long and distinguished history. Recent improvements in animal husbandry, functional tool development and genomic resources have resulted in novel developmental data from several species in this group. In this Primer, we introduce representative hemichordate species with contrasting modes of development and summarize recent findings that are beginning to yield important insights into deuterostome developmental mechanisms. 相似文献
3.
DE Ferrier 《Development (Cambridge, England)》2012,139(15):2643-2653
Annelids (the segmented worms) have a long history in studies of animal developmental biology, particularly with regards to their cleavage patterns during early development and their neurobiology. With the relatively recent reorganisation of the phylogeny of the animal kingdom, and the distinction of the super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus for studying this phylum has arisen. As one of the major phyla within Lophotrochozoa, Annelida are playing an important role in deducing the developmental biology of the last common ancestor of the protostomes and deuterostomes, an animal from which >98% of all described animal species evolved. 相似文献
4.
The phylogenetic position of amphioxus, together with its relatively simple and evolutionarily conserved morphology and genome structure, has led to its use as a model for studies of vertebrate evolution. In particular, the recent development of technical approaches, as well as access to the complete amphioxus genome sequence, has provided the community with tools with which to study the invertebrate-chordate to vertebrate transition. Here, we present this animal model, discussing its life cycle, the model species studied and the experimental techniques that it is amenable to. We also summarize the major findings made using amphioxus that have informed us about the evolution of vertebrate traits. 相似文献
5.
There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation. 相似文献
6.
Schaap P 《Development (Cambridge, England)》2011,138(3):387-396
Dictyostelium discoideum belongs to a group of multicellular life forms that can also exist for long periods as single cells. This ability to shift between uni- and multicellularity makes the group ideal for studying the genetic changes that occurred at the crossroads between uni- and multicellular life. In this Primer, I discuss the mechanisms that control multicellular development in Dictyostelium discoideum and reconstruct how some of these mechanisms evolved from a stress response in the unicellular ancestor. 相似文献
7.
The moss Physcomitrella patens has recently emerged as a powerful genetically tractable model plant system. As a member of the bryophytes, P. patens provides a unique opportunity to study the evolution of a myriad of plant traits, such as polarized cell growth, gametophyte-to-sporophyte transitions, and sperm-to-pollen transition. The availability of a complete genome sequence, together with the ability to perform gene targeting efficiently in P. patens has spurred a flurry of elegant reverse genetic studies in this plant model that address a variety of key questions in plant developmental biology. 相似文献
8.
Lemaire P 《Development (Cambridge, England)》2011,138(11):2143-2152
The tunicates, or urochordates, constitute a large group of marine animals whose recent common ancestry with vertebrates is reflected in the tadpole-like larvae of most tunicates. Their diversity and key phylogenetic position are enhanced, from a research viewpoint, by anatomically simple and transparent embryos, compact rapidly evolving genomes, and the availability of powerful experimental and computational tools with which to study these organisms. Tunicates are thus a powerful system for exploring chordate evolution and how extreme variation in genome sequence and gene regulatory network architecture is compatible with the preservation of an ancestral chordate body plan. 相似文献
9.
Spiders belong to the chelicerates, which is an arthropod group that branches basally from myriapods, crustaceans and insects. Spiders are thus useful models with which to investigate whether aspects of development are ancestral or derived with respect to the arthropod common ancestor. Moreover, they serve as an important reference point for comparison with the development of other metazoans. Therefore, studies of spider development have made a major contribution to advancing our understanding of the evolution of development. Much of this knowledge has come from studies of the common house spider, Parasteatoda tepidariorum. Here, we describe how the growing number of experimental tools and resources available to study Parasteatoda development have provided novel insights into the evolution of developmental regulation and have furthered our understanding of metazoan body plan evolution. 相似文献
10.
Lampreys and hagfish, which together are known as the cyclostomes or 'agnathans', are the only surviving lineages of jawless fish. They diverged early in vertebrate evolution, before the origin of the hinged jaws that are characteristic of gnathostome (jawed) vertebrates and before the evolution of paired appendages. However, they do share numerous characteristics with jawed vertebrates. Studies of cyclostome development can thus help us to understand when, and how, key aspects of the vertebrate body evolved. Here, we summarise the development of cyclostomes, highlighting the key species studied and experimental methods available. We then discuss how studies of cyclostomes have provided important insight into the evolution of fins, jaws, skeleton and neural crest. 相似文献
11.
Desnitskiĭ AG 《Ontogenez》2005,36(3):182-189
The data published during recent 15-20 years on comparative, experimental and molecular embryology of unusually developing sea urchins have been reviewed. These animals are characterized by large lipidrich eggs, highly modified embryogenesis, and the absence of a planktotrophic larva. Such a type of development is evolutionary advanced and arose independently in various phylogenetic lineages of the sea urchins. 相似文献
12.
Reciprocal questions often frame studies of the evolution of developmental mechanisms. How can species share similar developmental genetic toolkits but still generate diverse life forms? Conversely, how can similar forms develop from different toolkits? Genomics bridges the gap between evolutionary and developmental biology, and can help answer these evo-devo questions in several ways. First, it informs us about historical relationships, thus orienting the direction of evolutionary diversification. Second, genomics lists all toolkit components, thereby revealing contraction and expansion of the genome and suggesting mechanisms for evolution of both developmental functions and genome architecture. Finally, comparative genomics helps us to identify conserved non-coding elements and their relationship to genome architecture and development. 相似文献
13.
Evolutionary stability of the histone genes of sea urchins 总被引:1,自引:0,他引:1
14.
15.
16.
Morange M 《Developmental biology》2011,(1):13-16
The rise of evolutionary developmental biology was not the progressive isolation and characterization of developmental genes and gene networks. Many obstacles had to be overcome: the idea that all genes were more or less involved in development; the evidence that developmental processes in insects had nothing in common with those of vertebrates.Different lines of research converged toward the creation of evolutionary developmental biology, giving this field of research its present heterogeneity. This does not prevent all those working in the field from sharing the conviction that a precise characterization of evolutionary variations is required to fully understand the evolutionary process.Some evolutionary developmental biologists directly challenge the Modern Synthesis. I propose some ways to reconcile these apparently opposed visions of evolution. The turbulence seen in evolutionary developmental biology reflects the present entry of history into biology. 相似文献
17.
Shigeru Kuratani PhD 《Theorie in den Biowissenschaften》2003,122(2-3):230-251
Summary The question of vertebrate head segmentation has become one of the central issues in Evolutionary Developmental Biology. Beginning
as a theory based in comparative anatomy, a segmental theory of the head has been adopted and further developed by comparative
embryologists. With the use of molecular and cellular biology, and in particular analyses of the Hox gene complex, the question has been addressed at new levels, but it remains unresolved. In this review, vertebrate head segmentation
is reevaluated, by introducing findings from experimental embryology and evolutionary biology. Developmental biology has shown
that pattern is generated through hierarchically organized and causally linked series of events. The question of head segmentation
can be viewed as a question of generative constraint, that is whether segmentation in the head is imposed by underlying segmental
patterns, as it is in the trunk. In this respect, amphioxus appears to be segmented along the entire anteroposterior axis,
with myotomes and peripheral nerves repeating with the same rhythm (somitomerism). Similarly, in the vertebrate trunk, the
segmental patterns shared by myotomes, peripheral nerves and vertebrae are derived from the somites. However, in the head
of vertebrates there is no such mesodermal pattern, although neuromerism and branchiomerism do indicate the presence of constraints
derived from rhombomeres and pharyngeal pouches, respectively. These data fit better the concept of dual metamerism of the
vertebrate body proposed by Romer (1972), than the traditional head cavity-based segmental model by Goodrich (1930). 相似文献
18.
Evolutionary developmental biology and the problem of variation 总被引:11,自引:0,他引:11
Stern DL 《Evolution; international journal of organic evolution》2000,54(4):1079-1091
Abstract. One of the oldest problems in evolutionary biology remains largely unsolved. Which mutations generate evolutionarily relevant phenotypic variation? What kinds of molecular changes do they entail? What are the phenotypic magnitudes, frequencies of origin, and pleiotropic effects of such mutations? How is the genome constructed to allow the observed abundance of phenotypic diversity? Historically, the neo‐Darwinian synthesizers stressed the predominance of micromutations in evolution, whereas others noted the similarities between some dramatic mutations and evolutionary transitions to argue for macromutationism. Arguments on both sides have been biased by misconceptions of the developmental effects of mutations. For example, the traditional view that mutations of important developmental genes always have large pleiotropic effects can now be seen to be a conclusion drawn from observations of a small class of mutations with dramatic effects. It is possible that some mutations, for example, those in cis‐regulatory DNA, have few or no pleiotropic effects and may be the predominant source of morphological evolution. In contrast, mutations causing dramatic phenotypic effects, although superficially similar to hypothesized evolutionary transitions, are unlikely to fairly represent the true path of evolution. Recent developmental studies of gene function provide a new way of conceptualizing and studying variation that contrasts with the traditional genetic view that was incorporated into neo‐Darwinian theory and population genetics. This new approach in developmental biology is as important for micro‐evolutionary studies as the actual results from recent evolutionary developmental studies. In particular, this approach will assist in the task of identifying the specific mutations generating phenotypic variation and elucidating how they alter gene function. These data will provide the current missing link between molecular and phenotypic variation in natural populations. 相似文献
19.
Raff EC Popodi EM Kauffman JS Sly BJ Turner FR Morris VB Raff RA 《Evolution & development》2003,5(5):478-493
We made hybrid crosses between closely and distantly related sea urchin species to test two hypotheses about the evolution of gene regulatory systems in the evolution of ontogenetic pathways and larval form. The first hypothesis is that gene regulatory systems governing development evolve in a punctuational manner during periods of rapid morphological evolution but are relatively stable over long periods of slow morphological evolution. We compared hybrids between direct and indirect developers from closely and distantly related families. Hybrids between eggs of the direct developer Heliocidaris erythrogramma and sperm of the 4-million year distant species H. tuberculata, an indirect developer, restored feeding larval structures and paternal gene expression that were lost in the evolution of the direct-developing maternal parent. Hybrids resulting from the cross between eggs of H. erythrogramma and sperm of the 40-million year distant indirect-developer Pseudoboletia maculata are strikingly similar to hybrids between the congeneric hybrids. The marked similarities in ontogenetic trajectory and morphological outcome in crosses of involving either closely or distantly related indirect developing species indicates that their regulatory mechanisms interact with those of H. erythrogramma in the same way, supporting remarkable conservation of molecular control pathways among indirect developers. Second, we tested the hypothesis that convergent developmental pathways in independently evolved direct developers reflect convergence of the underlying regulatory systems. Crosses between two independently evolved direct-developing species from two 70-million year distant families, H. erythrogramma and Holopneustes purpurescens, produced harmoniously developing hybrid larvae that maintained the direct mode of development and did not exhibit any obvious restoration of indirect-developing features. These results are consistent with parallel evolution of direct-developing features in these two lineages. 相似文献
20.