首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沼兰族是兰科植物的大族之一,约2000种,除了极地和沙漠地区,全球均有分布.该族植物主要分布在热带地区,尤其在东南亚、热带美洲、非洲以及澳大利亚等地区种类非常丰富.目前,已有关于该族植物形态和分子系统的研究,但有关该族亚族和属间的系统关系尚不清楚,属的界定争议也较大.该文基于核基因片段 ITS 和叶绿体基因片段 mat K 序列,采用最大简约法、最大似然法贝叶斯推理分析法,对现有沼兰族主要属的123种植物和10个外类群植物进行了分子系统学研究.结果表明:沼兰族主要分为3个亚族分支,包括附生的鸢尾兰亚族(Oberoniinae)、地生的羊耳蒜亚族(Liparidinae)和沼兰亚族分支(Crepidium clade).鸢尾兰亚族包括6个属、羊耳蒜亚族分支包括5个属、沼兰亚族分支包括4个属;丫瓣兰亚族(Ypsilorchidinae)应归并为鸢尾兰亚族;Disticholiparis 属与 Stichorkis 属的模式标本相同,应并入 Stichorkis 属;沼兰属(Cre-pidium )和无耳沼兰属(Dienia )的唇瓣结构差异较大,但二者均为单系类群.此外,在收集野外实验材料过程中,发现了2种产自中国西南部和越南北部的沼兰族新种,分别命名为麻栗坡羊耳蒜(Platystyliparis mali-poensis G.D.Tang,X.Y.Zhuang & Z.J.Liu)和秉滔羊耳蒜(Cestichis pingtaoi G.D.Tang,X.Y.Zhuang &Z.J.Liu).  相似文献   

2.
Russian Journal of Developmental Biology - Embryogenesis of the plant Liparis parviflora, a representative of the tribe Malaxideae (Orchidaceae), was studied. The multivariance of the first cell...  相似文献   

3.
The filmy ferns of the tribe Trichomaneae, synonymous with Tichomanes s.L., show various constructions of their root system that correspond to different growth forms as well as ecology. Most terrestrial species possess a short erect shoot with numerous thick roots, whereas epiphytic species have a long creeping rhizome that may develop a few thin roots. An evolutionary progression from ferns with well-developed roots to ferns without roots is postulated. Rootless species occur in two monophyletic groups, subgen. Crepidomanes and subgen. Didymoglossum. The results are summarized in a new classification for the tribe. Secondary simplification, e.g. loss of roots, is discussed as an adaptive trait in epiphytic plants. Transformed structures such as root-like shoots and adhesive hairs are observed in rootless taxa and their evolutionary significance is briefly discussed. Climbing filmy ferns are recognized as possible closely related species based on the similarities in their root systems.  相似文献   

4.
5.
This is the first molecular study to trace the evolutionary transition in substrate preference across a primate radiation. We surveyed 20 guenons (tribe Cercopithecini) and 4 outgroup taxa for two Y-chromosomal genes, TSPY ( approximately 2240 bp) and SRY ( approximately 780 bp), and one X-chromosomal intergenic region ( approximately 1600 bp) homologous to a fragment of human Xq13.3. Parsimony and maximum likelihood analyses of the sex chromosomal datasets consistently cluster the three terrestrial taxa, Cercopithecus aethiops, Cercopithecus lhoesti, and Erythrocebus patas, into a group that is reciprocally monophyletic with a clade of arboreal Cercopithecus spp. Given that the common ancestor of the two clades was most likely an arboreal taxon, this phylogenetic pattern suggests the transition to terrestriality occurred only once among the extant guenons. This pattern also indicates that the genus Cercopithecus is paraphyletic, as presently defined, and calls for taxonomic revision so that the nomen describes a strictly monophyletic group. We outline four acceptable taxonomic schemes and suggest that the most appropriate is to reassign C. aethiops, C. lhoesti, and E. patas to the resurrected genus Chlorocebus. Finally, while the phylogeny and taxonomy of terrestrial guenons were the focus of this study, the X-chromosome sequences presented here represent the first molecular evidence to unambiguously place Allenopithecus nigroviridis as the basal lineage of the tribe Cercopithecini.  相似文献   

6.
A recent phylogenetic study based on morphological, biochemical and early life history characters resurrected the genus Scartomyzon (jumprock suckers, c . eight−10 species) from Moxostoma (redhorse suckers, c . 10–11 species) and advanced the understanding of relationships among species in these two genera, and the genealogical affinities of these genera with other evolutionary lineages within the tribe Moxostomatini in the subfamily Catostominae. To further examine phylogenetic relationships among moxostomatin suckers, the complete mitochondrial (mt) cytochrome b gene was sequenced from all species within this tribe and representative outgroup taxa from the Catostomini and other catostomid subfamilies. Phylogenetic analysis of gene sequences yielded two monophyletic clades within Catostominae: Catostomus + Deltistes + Xyrauchen + Erimyzon + Minytrema and Moxostoma + Scartomyzon + Hypentelium + Thoburnia . Within the Moxostomatini, Thoburnia was either unresolved or polyphyletic; Thoburnia atripinnis was sister to a monophyletic Hypentelium . In turn, this clade was sister to a monophyletic clade containing Scartomyzon and Moxostoma . Scartomyzon was never resolved as monophyletic, but was always recovered as a polyphyletic group embedded within Moxostoma , rendering the latter genus paraphyletic if ' Scartomyzon ' continues to be recognized. Relationships among lineages within the Moxostoma and' Scartomyzon 'clade were resolved as a polytomy. To better reflect phylogenetic relationships resolved in this analysis, the following changes to the classification of the tribe Moxostomatini are proposed: subsumption of' Scartomyzon 'into Moxostoma ; restriction of the tribe Moxostomatini to Moxostoma ; resurrect the tribe Erimyzonini, containing Erimyzon and Minytrema , classified as incertae sedis within Catostominae; retain the tribe Thoburniini.  相似文献   

7.
The Andes are a cradle of orchid evolution, but most phylogenetic studies of Orchidaceae in this biodiversity hotspot have dealt with epiphytic epidendroid lineages. Here we present a study on neotropical, terrestrial, orchidoid taxa of Prescottiinae s.l. (8 genera, ~100 species), which are adapted to some of the highest elevation habitats on earth that support orchids. They are currently included within an expanded concept of Cranichidinae in the tribe Cranichideae, but DNA sequence data show that neither Prescottiinae s.l. nor Cranichidinae s.s. are monophyletic. Prescottiinae s.l. consist of two strongly supported lineages: the Altensteinia and Prescottia clades, which have closer affinities to Spiranthinae than to Cranichidinae. The Prescottia clade comprises two well-supported subclades, one including most sampled species of Prescottia and a second one with Pseudocranichis thysanochila sister to Prescottia tubulosa. As a group, they are sister to Spiranthinae. Sister to this pair is the Altensteinia clade comprised of six genera, whose intergeneric relationships are well resolved. Finally, Cranichidinae s.s. is sister to all three of these clades. Morphological and ecological features distinguishing the major groups are discussed, as are potential synapomorphies to define them. The reconstructed phylogeny indicates that the classification of Cranichideae needs to be reexamined.  相似文献   

8.
A cladistic analysis based on 63 morphological characters was carried out on the tribe Colletieae including two presumed closely related genera, Geanothus and Noltea as outgroupS. In addition to a parsimony analysis of the equally weighted characters, analyses investigating the effects of character weighting, removal of a presumed hybrid species as well as the impact of uncertainly scored characters were undertaken. In all analyses Noltea was placed as sister group to a well supported monophyletic Colletieae. Nineteen different in group topologies were found, with the additional analyses mainly supporting two of them. Within the Colletieae a basal dichotomy divides Trevoa and Retanilla from the remainder of the tribe. While the Trevoa-Retanilla clade is fully resolved, the second lacks detailed resolution. Within this clade the Colletia species from a well supported monophyletic group, while monophyly of the disjunct genus Discaria could not be confirmed.  相似文献   

9.
 A phylogenetic study of the largest tribe of palms, the Areceae, was conducted using sequences of two low-copy nuclear genes. Previous morphological and plastid DNA studies have not supported the monophyly of the tribe, but have placed its members in a large clade that includes the monophyletic tribes Geonomeae, Cocoeae, Podococceae, and Hyophorbeae. We analyzed this large clade to test the monophyly of tribe Areceae with nuclear data, to explore relationships among its subtribes, and to identify other monophyletic groups. For 54 palm species, including members of all 17 subtribes of tribe Areceae, we sequenced regions of the malate synthase (MS) and phosphoribulokinase (PRK) genes. Simultaneous analysis of these regions revealed 52 shortest trees, all of which resolved tribe Areceae as polyphyletic. Subtribes Iguanurinae, Dypsidinae, Oncospermatinae, and Arecinae were also resolved as polyphyletic. A clade of Indo-Pacific taxa was resolved with strong support, and would be a suitable target for more focused study. Received February 7, 2001; accepted April 9, 2002 Published online: December 3, 2002  相似文献   

10.
The taxonomic treatment within the unigeneric tribe Yinshanieae(Brassicaceae) is controversial, owing to differences in generic delimitation applied to its species. In this study, sequences from nuclear ITS and chloroplast trn L-F regions were used to test the monophyly of Yinshanieae, while two nuclear markers(ITS, ETS) and four chloroplast markers(trnL-F, trn H-psbA, rps16, rpL32-trnL) were used to elucidate the phylogenetic relationships within the tribe. Using maximum parsimony, maximum likelihood, and Bayesian inference methods, we reconstructed the phylogeny of Brassicaceae and Yinshanieae. The results show that Yinshanieae is not a monophyletic group, with the taxa splitting into two distantly related clades: one clade contains four taxa and falls in Lineage I, whereas the other includes all species previously placed in Hilliella and is embedded in the Expanded Lineage II. The tribe Yinshanieae is redefined, and a new tribe, Hillielleae, is proposed based on combined evidence from molecular phylogeny, morphology, and cytology.  相似文献   

11.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

12.
Sigmodontine rodents are the most diverse family-level mammalian clade in the Neotropical region, with about 70 genera and 320 recognized species. Partial sequences (1266 bp) from the first exon of the nuclear gene encoding the Interphotoreceptor Retinoid Binding Protein (IRBP) were used to infer the phylogenetic relationships among 44 species representing all 16 currently recognized genera of the largest sigmodontine tribe, the Oryzomyini. Monophyly of the tribe was assessed relative to 15 non-oryzomyine sigmodontine taxa representing all major sigmodontine lineages. Twelve taxa from seven muroid subfamilies were used as outgroups. The resulting matrix included 71 taxa and 386 parsimony-informative characters. Phylogenetic analysis of this matrix resulted in 16 equally parsimonious cladograms, which contained the following well-supported groups: (i). a monophyletic Oryzomyini, (ii). a clade containing all oryzomyines except Scolomys and Zygodontomys, (iii). a clade containing Oecomys, Handleyomys, and several species of forest-dwelling Oryzomys, and (iv). a clade containing the remaining oryzomyine taxa. The last clade is composed of two large subclades, each with lower nodal support, containing the following taxa: (i). Microryzomys, Oligoryzomys, Neacomys, and Oryzomys balneator; (ii). Holochilus, Lundomys, Pseudoryzomys, Nectomys, Amphinectomys, Sigmodontomys, and several species of open-vegetation or semiaquatic Oryzomys. Regarding relationships among non-oryzomyine taxa, sigmodontines, neotomines, and tylomyines do not form a monophyletic group; a clade containing Rheomys and Sigmodon is basal relative to all other sigmodontines; and the remaining sigmodontines are grouped in three clades: the first containing Thomasomyini, Akodontini, and Reithrodon; the second containing Abrothrichini, and Phyllotini, plus Wiedomys, Juliomys, Irenomys, and Delomys; and the third containing the oryzomyines. No conflict is observed between IRBP results and previous robust hypotheses from mitochondrial data, while a single case of incongruence is present between the IRBP topology and robust hypothesis from morphological studies.  相似文献   

13.
Cladistic parsimony analyses of rbcL nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae are presented here. These analyses divide the family into five primary monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order. These clades, with the exception of the vanilloids, essentially correspond to currently recognized subfamilies. A distinct subfamily, based upon tribe Vanilleae, is supported for Vanilla and its allies. The general tree topology is, for the most part, congruent with previously published hypotheses of intrafamilial relationships; however, there is no evidence supporting the previously recognized subfamilies Spiranthoideae, Neottioideae, or Vandoideae. Subfamily Spiranthoideae is embedded within a single clade containing members of Orchidoideae and sister to tribe Diurideae. Genera representing tribe Tropideae are placed within the epidendroid clade. Most traditional subtribal units are supported within each clade, but few tribes, as currently circumscribed, are monophyletic. Although powerful in assessing monophyly of clades within the family, in this case rbcL fails to provide strong support for the interrelationships of the subfamilies (i.e., along the spine of the tree). The cladograms presented here should serve as a standard to which future morphological and molecular studies can be compared.  相似文献   

14.
Past classifications of the tribe Acacieae Rchb. are outlined and the confusion concerning the relationships of the three subgenera of Acacia Mill. are highlighted. A plastid DNA analysis of Acacieae shows that the genus Acacia is not monophyletic. Furthermore subgenera Acacia Vassal and Aculeiferum Vassal are sister taxa and neither appear closely related to subgenus Phyllodineae (DC.) Ser. Subgenera Acacia and Aculeiferum form a clade that is basal to a well-supported clade consisting of tribe Ingeae Benth. taxa, Faidherbia albida (Del.) A. Chev. and subgenus Phyllodineae. The series of relationships suggested by the cpDNA data contradicts previous investigations of the tribe. Possible explanations of this conflict are explored, and the taxonomic implications of the plastid DNA data set are considered.  相似文献   

15.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

16.
Parsimony, likelihood, and Bayesian analyses of nuclear ITS and plastid trnL-F DNA sequence data are presented for the giant genus Croton (Euphorbiaceae s.s.) and related taxa. Sampling comprises 88 taxa, including 78 of the estimated 1223 species and 29 of the 40 sections previously recognized of Croton. It also includes the satellite genus Moacroton and genera formerly placed in tribe Crotoneae. Croton and all sampled segregate genera form a monophyletic group sister to Brasiliocroton, with the exception of Croton sect. Astraea, which is reinstated to the genus Astraea. A small clade including Moacroton, Croton alabamensis, and C. olivaceus is sister to all other Croton species sampled. The remaining Croton species fall into three major clades. One of these is entirely New World, corresponding to sections Cyclostigma, Cascarilla, and Velamea sensu Webster. The second is entirely Old World and is sister to a third, also entirely New World clade, which is composed of at least 13 of Webster's sections of Croton. This study establishes a phylogenetic framework for future studies in the hyper-diverse genus Croton, indicates a New World origin for the genus, and will soon be used to evaluate wood anatomical, cytological, and morphological data in the Crotoneae tribe.  相似文献   

17.
Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data   总被引:3,自引:0,他引:3  
DNA sequence data from the chloroplast noncoding rpl16 intron are used to address phylogenetic relationships among the major lineages of the grass family, with particular emphasis on the highly heterogeneous subfamily Bambusoideae and the basal lineages. Thirty-five grass sequences representing all six currently recognized major groups of the family and one outgroup sequence were analyzed using both parsimony and distance methods. The phylogenetic analyses indicated: (1) Puelia, a traditionally isolated bambusoid genus, is the most basal lineage in the BOP clade (Bambusoideae, Oryzoideae, and Pooideae); (2) the bambusoid clade is a sister group to the pooid clade; and (3) the monophyletic oryzoid clade is well separated from the bambusoid clade. The study further confirmed the recognition of two primary groups in the grass family: the BOP clade and the PACC clade (Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae); it also provided further evidence that the traditional subfamily Bambusoideae is highly heterogeneous and phylogenetically unacceptable. The data support Streptochaeteae, Anomochloeae, and Phareae as the most basal lineages among the extant grasses. Within the BOP clade, oryzoids and pooids are confirmed as two monophyletic clades, but the bambusoid clade, including only the woody bamboo tribe Bambuseae and the herbaceous bamboo tribe Olyreae, is relatively weakly supported. The study also indicated that the chloroplast noncoding region sequence data could be useful in phylogenetic analysis at relatively high taxonomic levels.  相似文献   

18.
19.
A phylogenetic analysis of the Arecoid Line (sensu Moore) of palms was conducted using 7 kb of coding and noncoding plastid DNA sequence data. Recovered maximum-parsimony and maximum-likelihood phylogenies support monophyly for the Arecoid Line relative to the rest of the family but paraphyly for subfamily Arecoideae and polyphyly for subfamily Ceroxyloideae (sensu Dransfield and Uhl). Tribes Cocoeae, Geonomeae, Hyophorbeae, and Iriarteae and subfamily Phytelephantoideae were identified as monophyletic as were subfamily Phytelephantoideae + Ravenea (tribe Ceroxyleae of Ceroxyloideae), Podococcus (tribe Podococceae of Arecoideae) + Pseudophoenix (tribe Cyclospatheae of Ceroxyloideae), Reinhardtia (tribe Malortieinae) + tribe Cocoeae (both of Arecoideae), and a clade containing all IndoPacific pseudomonomerous genera of tribe Areceae (Arecoideae). A few taxa show spurious resolution with noncoding plastid DNA data but noncoding data are generally congruent with protein-coding data. Biogeographic interpretation suggests a Gondwanan origin for the Arecoid Line with several lineages found on more than one fragment of the former supercontinent and primary diversification in these groups possibly due to continental breakup vicariance. Three groups involving Cocos, Orania, and the IndoPacific clade demonstrate independent dispersals into the IndoPacific region from a Gondwanan origin.  相似文献   

20.
An investigation of mushroom phylogeny using the largest subunit of RNA polymerase II gene sequences (RPB1) was conducted in comparison with nuclear ribosomal large subunit RNA gene sequences (nLSU) for the same set of taxa in the genus Inocybe (Agaricales, Basidiomycota). The two data sets, though not significantly incongruent, exhibit conflict among the placement of two taxa that exhibit long branches in the nLSU data set. In contrast, RPB1 terminal branch lengths are rather uniform. Bootstrap support is increased for clades in RPB1. Combined data sets increase the degree of confidence for several relationships. Overall, nLSU data do not yield a robust phylogeny when independently assessed by RPB1 sequences. This multigene study indicates that Inocybe is a monophyletic group composed of at least four distinct lineages-subgenus Mallocybe, section Cervicolores, section Rimosae, and subgenus Inocybe sensu Kühner, Kuyper, non Singer. Within subgenus Inocybe, two additional lineages, one composed of species with smooth basidiospores (clade I) and a second characterized by nodulose-spored species (clade II), are recovered by RPB1 and combined data. The nLSU data recover only clade I. The genera Astrosporina and Inocybella cannot be recognized phylogenetically. "Supersections" Cortinatae and Marginatae are not monophyletic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号