首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes, illustrating the reversibility of these synaptic defects. Deafferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention.  相似文献   

2.
3.
Insect thoracic ganglia contain efferent octopaminergic unpaired median neurons (UM neurons) located in the midline, projecting bilaterally and modulating neuromuscular transmission, muscle contraction kinetics, sensory sensitivity and muscle metabolism. In locusts, these neurons are located dorsally or ventrally (DUM- or VUM-neurons) and divided into functionally different sub-populations activated during different motor tasks. This study addresses the responsiveness of locust thoracic DUM neurons to various sensory stimuli. Two classes of sense organs, cuticular exteroreceptor mechanosensilla (tactile hairs and campaniform sensilla), and photoreceptors (compound eyes and ocelli) elicited excitatory reflex responses. Chordotonal organ joint receptors caused no responses. The tympanal organ (Müller's organ) elicited weak excitatory responses most likely via generally increased network activity due to increased arousal. Vibratory stimuli to the hind leg subgenual organ never elicited responses. Whereas DUM neurons innervating wing muscles are not very responsive to sensory stimulation, those innervating leg and other muscles are very responsive to stimulation of exteroreceptors and hardly responsive to stimulation of proprioceptors. After cutting both cervical connectives all mechanosensory excitation is lost, even for sensory inputs from the abdomen. This suggests that, in contrast to motor neurons, the sensory inputs to octopaminergic efferent neuromodulatory cells are pre-processed in the suboesophageal ganglion.  相似文献   

4.
5.
Conditioned reflex is characterized by plasticity resulting in a bilateral selective input-output linking. In simple nervous systems, input stimuli are represented by selective detectors connected with command neurons through plastic synapses strengthened during associative learning and weakened during extinction. The process of associative learning is due to temporal coincidence of excitation in both detector and command neurons. Short-term memory within a plastic synapses is mediated by phosphorilation of postsynaptic receptor molecules not requiring protein synthesis. Long-term synaptic memory parallels expression of immediate early genes that mediates structural gene expression and protein synthesis. A simple detector-command neuron association becomes more complex in the course of evolution. Input mechanism is supplemented with predetector interneurons preceding detectors. Detector selectively tuned to specific input stimulus is converging on a command neuron constitute selectivity mechanism for conditioned reflexes to complex stimuli. The complication also concerns the output mechanisms. Command neurons become more specialized, and an additional link of premotor interneurons is incorporated between command neurons and motor neurons. Via synapses, the command neurons can produce excitation in a particular set of premotor neurons controlling a specific set of motor neurons responsible for behavioral act configuration. Specialization of command neurons in combination with premotor neuron structures increases the variability of outputs. Conditioned reflexes with more complex inputs and more flexible outputs determine the diversity of acquired behaviors.  相似文献   

6.
7.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.  相似文献   

8.
A two-compartment, flat-sheet preparation of rat colon was devised, which enabled exclusive measurement of longitudinal muscle activity during the ascending and descending phases of the peristaltic reflex. A previous study using longitudinal muscle strips revealed the operation of an integrated neuronal circuit consisting of somatostatin, opioid, and VIP/pituitary adenylate cyclase-activating peptide (PACAP)/nitric oxide synthase (NOS) interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle strips that could lead to descending contraction and ascending relaxation of this muscle layer. Previous studies in peristaltic preparations have also shown that an increase in somatostatin release during the descending phase causes a decrease in Met-enkephalin release and suppression of the inhibitory effect of Met-enkephalin on VIP/PACAP/NOS motor neurons innervating circular muscle and a distinct set of VIP/PACAP/NOS interneurons. The present study showed that in contrast to circular muscle, longitudinal muscle contracted during the descending phase and relaxed during the ascending phase. Somatostatin antiserum inhibited descending contraction and augmented ascending relaxation of longitudinal muscle, whereas naloxone had the opposite effect. VIP and PACAP antagonists inhibited descending contraction of longitudinal muscle and augmented ascending relaxation. Atropine and tachykinin antagonists inhibited descending contraction of longitudinal muscle. As shown in earlier studies, the same antagonists and antisera produced opposite effects on circular muscle. We conclude that longitudinal muscle contracts and relaxes in reverse fashion to circular muscle during the peristaltic reflex. Longitudinal muscle activity is regulated by excitatory VIP/PACAP/NOS interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle.  相似文献   

9.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

10.
The sequential stepping of left and right limbs is a fundamental motor behavior that underlies walking movements. This relatively simple locomotor behavior is generated by the rhythmic activity of motor neurons under the control of spinal neural networks known as central pattern generators (CPGs) that comprise multiple interneuron cell types. Little, however, is known about the identity and contribution of defined interneuronal populations to mammalian locomotor behaviors. We show a discrete subset of commissural spinal interneurons, whose fate is controlled by the activity of the homeobox gene Dbx1, has a critical role in controlling the left-right alternation of motor neurons innervating hindlimb muscles. Dbx1 mutant mice lacking these ventral interneurons exhibit an increased incidence of cobursting between left and right flexor/extensor motor neurons during drug-induced locomotion. Together, these findings identify Dbx1-dependent interneurons as key components of the spinal locomotor circuits that control stepping movements in mammals.  相似文献   

11.
12.
13.
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.  相似文献   

14.
The neuroanatomy of an amphibian embryo spinal cord   总被引:6,自引:0,他引:6  
Horseradish peroxidase has been used to stain spinal cord neurons in late embryos of the clawed toad (Xenopus laevis). It has shown clearly the soma, dendrites and axonal projections of spinal sensory, motor and interneurons. On the basis of light microscopy we describe nine differentiated spinal cord neuron classes. These include the Rohon-Beard cells and extramedullary cells which are both primary sensory neurons, one class of motoneurons that innervate the segmental myotomes, two classes of interneurons with decussating axons, three classes of interneurons with ipsilateral axons and a previously undescribed class of ciliated ependymal cells with axons projecting ipsilaterally to the brain. We believe that all differentiated neuron classes are described and that this anatomical account is the most complete for any vertebrate spinal cord.  相似文献   

15.
In addition to the well-characterized direct and indirect projection neurons there are four major interneuron types in the striatum. Three contain GABA and either parvalbumin, calretinin or NOS/NPY/somatostatin. The fourth is cholinergic. It might be assumed that dissociated cell cultures of striatum (typically from embryonic day E18.5 in rat and E14.5 for mouse) contain each of these neuronal types. However, in dissociated rat striatal (caudate/putamen, CPu) cultures arguably the most important interneuron, the giant aspiny cholinergic neuron, is not present. When dissociated striatal neurons from E14.5 Sprague–Dawley rats were mixed with those from E18.5 rats, combined cultures from these two gestational periods yielded surviving cholinergic interneurons and representative populations of the other interneuron types at 5 weeks in vitro. Neurons from E12.5 CD-1 mice were combined with CPu neurons from E14.5 mice and the characteristics of striatal interneurons after 5 weeks in vitro were determined. All four major classes of interneurons were identified in these cultures as well as rare tyrosine hydroxylase positive interneurons. However, E14.5 mouse CPu cultures contained relatively few cholinergic interneurons rather than the nearly total absence seen in the rat. A later dissection day (E16.5) was required to obtain mouse CPu cultures totally lacking the cholinergic interneuron. We show that these cultures generated from two gestational age cells have much more nearly normal proportions of interneurons than the more common organotypic cultures of striatum. Interneurons are generated from both ages of embryos except for the cholinergic interneurons that originate from the medial ganglionic eminence of younger embryos. Study of these cultures should more accurately reflect neuronal processing as it occurs in the striatum in vivo. Furthermore, these results reveal a procedure for parallel culture of striatum and cholinergic depleted striatum that can be used to examine the function of the cholinergic interneuron in striatal networks.  相似文献   

16.
In Parkinson's disease (PD), dopamine depletion alters neuronal activity in the direct and indirect pathways and leads to increased synchrony in the basal ganglia network. However, the origins of these?changes remain elusive. Because GABAergic interneurons regulate activity of projection neurons and?promote neuronal synchrony, we recorded from pairs of striatal fast-spiking (FS) interneurons and direct- or indirect-pathway MSNs after dopamine depletion with 6-OHDA. Synaptic properties of?FS-MSN connections remained similar, yet within 3?days of dopamine depletion, individual FS cells doubled their connectivity to indirect-pathway MSNs, whereas connections to direct-pathway MSNs remained unchanged. A model of the striatal microcircuit revealed that such increases in FS innervation were effective at enhancing synchrony within targeted cell populations. These data suggest that after dopamine depletion, rapid target-specific microcircuit organization in the striatum may lead to increased synchrony of indirect-pathway MSNs that contributes to pathological network oscillations and motor symptoms of PD.  相似文献   

17.
A possible mechanism of participation of cholinergic striatal interneurons and dopaminergic cells in conditioned selection of a certain types of motor activity is proposed. This selection is triggered by simultaneous increase in the activity of dopaminergic cells and a pause in the activity of cholinergic interneurons in response to a conditioned stimulus. This pause is promoted by activation of striatal inhibitory interneurons and action of dopamine at D2 receptors on cholinergic cells. Opposite changes in dopamine and acetylcholine concentration synergistically modulate the efficacy of corticostriatal inputs, modulation rules for the "strong" and "weak" corticostriatal inputs are opposite. Subsequent reorganization of neuronal firing in the loop cortex--basal ganglia--thalamus--cortex results in amplification of activity of the group of cortical neurons that strongly activate striatal cells, and simultaneous suppression of activity of another group of cortical neurons that weakly activate striatal cells. These changes can underlie a conditioned selection of motor activity performed with involvement of the motor cortex. As follows from the proposed model, if the time delay between conditioned and unconditioned stimuli does not exceed the latency of responses of dopaminergic and cholinergic cells (about 100 ms), conditioned selection of motor activity and learning is problematic.  相似文献   

18.
Local nonspiking interneurons in the thoracic ganglia of insects are important premotor elements in posture control and locomotion. It was investigated whether these interneurons are involved in the central neuronal circuits generating the oscillatory motor output of the leg muscle system during rhythmic motor activity. Intracellular recordings from premotor nonspiking interneurons were made in the isolated and completely deafferented mesothoracic ganglion of the stick insect in preparations exhibiting rhythmic motor activity induced by the muscarinic agonist pilocarpine. All interneurons investigated provided synaptic drive to one or more motoneuron pools supplying the three proximal leg joints, that is, the thoraco-coxal joint, the coxa-trochanteral joint and the femur-tibia joint. During rhythmicity in 83% (n=67) of the recorded interneurons, three different kinds of synaptic oscillations in membrane potential were observed: (1) Oscillations were closely correlated with the activity of motoneuron pools affected; (2) membrane potential oscillations reflected only certain aspects of motoneuronal rhythmicity; and (3) membrane potential oscillations were correlated mainly with the occurrence of spontaneous recurrent patterns (SRP) of activity in the motoneuron pools. In individual interneurons membrane potential oscillations were associated with phase-dependent changes in the neuron's membrane conductance. Artificial changes in the interneurons' membrane potential strongly influenced motor activity. Injecting current pulses into individual interneurons caused a reset of rhythmicity in motoneurons. Furthermore, current injection into interneurons influenced shape and probability of occurrence for SRPs. Among others, identified nonspiking interneurons that are involved in posture control of leg joints were found to exhibit the above properties. From these results, the following conclusions on the role of nonspiking interneurons in the generation of rhythmic motor activity, and thus potentially also during locomotion, emerge: (1) During rhythmic motor activity most nonspiking interneurons receive strong synaptic drive from central rhythm-generating networks; and (2) individual nonspiking interneurons some of which underlie sensory-motor pathways in posture control, are elements of central neuronal networks that generate alternating activity in antagonistic leg motoneuron pools. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
20.
Previous comparative and developmental studies have suggested that the cholinergic inner ear efferent system derives from developmentally redirected facial branchial motor neurons that innervate the vertebrate ear hair cells instead of striated muscle fibers. Transplantation of Xenopus laevis ears into the path of spinal motor neuron axons could show whether spinal motor neurons could reroute to innervate the hair cells as efferent fibers. Such transplantations could also reveal whether ear development could occur in a novel location including afferent and efferent connections with the spinal cord. Ears from stage 24-26 embryos were transplanted from the head to the trunk and allowed to mature to stage 46. Of 109 transplanted ears, 73 developed with otoconia. The presence of hair cells was confirmed by specific markers and by general histology of the ear, including TEM. Injections of dyes ventral to the spinal cord revealed motor innervation of hair cells. This was confirmed by immunohistochemistry and by electron microscopy structural analysis, suggesting that some motor neurons rerouted to innervate the ear. Also, injection of dyes into the spinal cord labeled vestibular ganglion cells in transplanted ears indicating that these ganglion cells connected to the spinal cord. These nerves ran together with spinal nerves innervating the muscles, suggesting that fasciculation with existing fibers is necessary. Furthermore, ear removal had little effect on development of cranial and lateral line nerves. These results indicate that the ear can develop normally, in terms of histology, in a new location, complete with efferent and afferent innervations to and from the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号