首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.  相似文献   

2.
3.
为揭示丘陵沟壑区刺槐的养分重吸收特征及其驱动因素,研究该区不同林龄刺槐叶片全氮和全磷的浓度,以及土壤有机碳、全氮、全磷、铵态氮、硝态氮和速效磷浓度及其化学计量,分析了叶片氮磷重吸收效率与土壤养分特性之间的关系。结果表明: 植物和土壤的养分随林龄增长发生显著变化,而土壤总磷和速效磷浓度较低。氮重吸收效率随林分生长先增加后降低,范围为48.2%~54.0%,平均为48.5%;磷重吸收效率则显著增加,范围为45.2%~49.4%,平均为46.9%。氮重吸收效率与土壤氮素和氮磷比呈负向响应,而磷重吸收效率与氮磷比呈显著正相关,与土壤速效磷呈负相关。表明土壤养分有效性的变化负向驱动养分重吸收效率。由于该生境中刺槐林的固氮效应及磷限制,叶片养分重吸收策略对土壤氮磷比响应强烈。  相似文献   

4.
Isolated paddock trees are a common feature of agri-pastoral landscapes in south-eastern Australia. We assessed the impact of trees on soil nutrients by examining (1) changes in soil nutrients under clumped and isolated (living and dead) trees at four microsites corresponding with increasing distance from the trunk (trunk, mid-canopy, drip line, open), and (2) changes with depth under trees growing in clearly-defined clumps. We detected significantly greater concentrations of organic C, and total N and S under trees growing in clumps compared with either isolated living or dead trees. Levels of soluble Ca2+, K+ and Mg2+, pH, electrical conductivity (EC) and available P declined with increasing distance from the trees, but there were no significant trends for organic C, or total N and S. The concentration of most nutrients declined with depth, particularly at microsites close to the trunk, while pH increased with depth. We believe that differences in chemistry were largely driven by greater inputs of organic matter under the trees. This study reinforces the view that trees, whether scattered or in clumps, are important for soil nutrient conservation in agri-pastoral landscapes.  相似文献   

5.
Foliage construction cost (glucose requirement for formation of a unit foliar biomass, G , kg glu kg−1), chemical composition and morphology were examined along a light gradient across the canopies in five deciduous species, which ranked according to increasing shade-tolerance as Populus tremula < Fraxinus excelsior < Tilia cordata = Corylus avellana < Fagus sylvatica . Light conditions in the canopy were estimated by a hemispheric photographic technique, allowing ranking of sample locations according to long-term light input incident to the sampled leaves (relative irradiance). G and foliage carbon concentration increased with increasing relative irradiance in F. excelsior , T. cordata and C. avellana , but wereindependent of irradiance in F. sylvatica and P. tremula . However, if G of non-structural-carbohydrate-free dry mass was considered, it also increased with increasing relative irradiance in P. tremula . A positive correlation between the concentration of carbon-rich lignin and irradiance, probably a result of the acclimation to greater water stress at higher light, was the major reason for the light-dependence of G . Lignin concentrations were highest in more shade-tolerant species, resulting in greatest carbon concentrations in these species. Since carbon concentration and G are directly linked, the leaves of shade-tolerant species were also more expensive to construct. As the result of these effects, G increased faster with increasing leaf dry mass per area which was mainly determined by relative irradiance, in shade-tolerators. Given that shade-tolerant species had lower leaf dry mass per area at common irradiance and that this saturated at lower relative irradiance than leaf dry mass per area in the intolerant species, it was concluded that enhanced energy requirements for foliage construction might constrain species morphological plasticity and the upper limit of leaf dry mass per area attainable at high light.  相似文献   

6.
7.
8.
We examined the relationship between meristem allocation and plant size for four annual plant species: Arabidopsis thaliana, Arenaria serphyllifolia, Brassica rapa, and Chaenorrhinum minus. Gradients of light and nutrient availability were used to obtain a range of plant sizes for each of these species. Relative allocation to reproductive, inactive, and growth meristems were used to measure reproductive effort, apical dominance, and branching intensity, respectively. We measured allocation to each of these three meristem fates at weekly intervals throughout development and at final developmental stage. At all developmental stages reproductive effort and branching intensity tended to increase with increasing plant size (i.e., due to increasing resource availability) and apical dominance tended to decrease with increasing plant size. We interpret these responses as a strategy for plants to maximize fitness across a range of environments. In addition, significant differences in meristem response among species may be important in defining the range of habitats in which a species can exist and may help explain patterns of species competition and coexistence in habitats with variable resource availability.  相似文献   

9.
This paper examines morphological plasticity of clonal plants of contrasting habitats and of contrasting architectures in response to nutrient supply. The hypotheses were tested that plants from rich habitats possess greater plasticity in response to variation in resource supply than species from poor habitats, and that rhizomatous species are less plastic in their response than stoloniferous species. Two sympodial rhizomatous herbs (Carex flacca, C. hirta) and two monopodial stoloniferous herbs (Trifolium fragiferum, T. repens) were subjected to four levels of nutrient supply in a garden experiment. One of the two species of each genus (C. hirta, T. repens) is from fertile and the other from infertile habitats. We measured 1) whole plant characters: total plant dry weight, number of modules (product of a single apical meristem) and number of ramets; 2) ramet characters: ramet leaf area and ramet height; and 3) spacer characters: branches per module, length per module and length per module internode.All measured characters in the Trifolium species significantly responded to treatment: the values for all measured characters increased with higher levels of fertilization. The differences in plant characters between fertilization levels were larger in Trifolium repens than in T. fragiferum in terms of whole plant characters, ramet characters and stolon internode length. The two Carex species did not differ in their responses to treatment in terms of most characters measured. In ramet characters and in some whole plant characters the species from fertile habitats were more plastic than those from infertile habitats. In spacer characters this pattern was not found. Foraging could not be demonstrated unequivocally.Morphological plasticity in the stoloniferous (Trifolium) species was much larger than in the rhizomatous (Carex) species. This seems in accordance with a foremost storage function of rhizomes, as against a foremost explorative function of stolons.  相似文献   

10.
11.
Although northern temperate forests are generally not considered phosphorus (P) limited, ecosystem P limitation may occur on highly weathered or strongly acidic soils where bioavailable inorganic P is low. In such environments, soil organisms may compensate by increasing the utilization of organic P via the production of extracellular enzymes to prevent limitation. In this study, we experimentally increased available P and/or pH in several acidic eastern deciduous forests underlain by glaciated and unglaciated soils in eastern Ohio, USA. We hypothesized that where inorganic P is low; soil microbes are able to access organic P by increasing production of phosphatase enzymes, thereby overcoming biogeochemical P limitations. We measured surface soil for: available P pools, N mineralization and nitrification rates, total C and N, enzymes responsible for C, N, and P hydrolysis, and microbial community composition (PLFA). Increasing surface soil pH a whole unit had little effect on microbial community composition, but increased N cycling rates in unglaciated soils. Phosphorus additions suppressed phosphatase activities over 60% in the unglaciated soils but were unchanged in the glaciated soils. All treatments had minimal influence on microbial biomass, but available pools of P strongly correlated with microbial composition. Microbes may be dependent on sources of organic P in some forest ecosystems and from a microbial perspective soil pH might be less important overall than P availability. Although our sampling was conducted less than 1 year after treatment initiation, microbial community composition was strongly influenced by available P pools and these effects may be greater than short-term increases in soil pH.  相似文献   

12.
Ludwig  Fulco  de Kroon  Hans  Berendse  Frank  Prins  Herbert H.T. 《Plant Ecology》2004,170(1):93-105
In an East African savanna herbaceous layer productivity and species composition were studied around Acacia tortilis trees of three different age classes, as well as around dead trees and in open grassland patches. The effects of trees on nutrient, light and water availability were measured to obtain an insight into which resources determine changes in productivity and composition of the herbaceous layer. Soil nutrient availability increased with tree age and size and was lowest in open grassland and highest under dead trees. The lower N:P ratios of grasses from open grassland compared to grasses from under trees suggested that productivity in open grassland was limited by nitrogen, while under trees the limiting nutrient was probably P. N:P ratios of grasses growing under bushes and small trees were intermediate between large trees and open grassland indicating that the understorey of Acacia trees seemed to change gradually from a N-limited to a P-limited vegetation. Soil moisture contents were lower under than those outside of canopies of large Acacia trees suggesting that water competition between trees and grasses was important. Species composition of the herbaceous layer under Acacia trees was completely different from the vegetation in open grassland. Also the vegetation under bushes of Acacia tortilis was different from both open grassland and the understorey of large trees. The main factor causing differences in species composition was probably nutrient availability because species compositions were similar for stands of similar soil nutrient concentrations even when light and water availability was different. Changes in species composition did not result in differences in above-ground biomass, which was remarkably similar under different sized trees and in open grassland. The only exception was around dead trees where herbaceous plant production was 60% higher than under living trees. The results suggest that herbaceous layer productivity did not increase under trees by a higher soil nutrient availability, probably because grass production was limited by competition for water. This was consistent with the high plant production around dead trees because when trees die, water competition disappears but the high soil nutrient availability remains. Hence, in addition to tree soil nutrient enrichment, below-ground competition for water appears to be an important process regulating tree-grass interactions in semi-arid savanna.  相似文献   

13.
Vegetation, leaf litter fall and soil pH were sampled repeatedly within semipermanent plots in a South-Swedish deciduous forest, 1935–1983. Leaf litter fall was summarized in a litter quality index. Vegetation types were differentiated along similar gradients in soil pH and leaf litter quality. The greatest shifts in dominance among field layer species were found in those plots where the quality of the leaf litter had improved. These plots also showed a halt in the general tendency towards a decreasing pH in the top soil.  相似文献   

14.
15.
K. Mengel 《Plant and Soil》1982,64(1):129-138
Summary In most arable soils the nitrate availability depends mainly on the quantity of nitrate present in the rooting zone at the beginning of the growing season. Easily mineralizable organic N and the release of non-exchangeable NH4 from clay minerals may in addition control the nitrogen availability during a season. In flooded soils, ammonium is the major form of nitrogen absorbed by plants. Ammonium dynamics in these soils is similar to that of potassium. The availability of both is controlled mainly by the intensity and buffering power for ammonium or potassium, respectively. Basically, intensity of the supply and buffering power for phosphate are the main factors determining the phosphate availability. The determination of the phosphate buffer power, especially in the root zone, however, remains to be difficult. Soil test methods should take into consideration the major factors and processes relevant to the availability of a particular plant nutrient.  相似文献   

16.
王沫竹  董必成  李红丽  于飞海 《生态学报》2016,36(24):8091-8101
自然界中光照和养分因子常存在时空变化,对植物造成选择压力。克隆植物可通过克隆生长和生物量分配的可塑性来适应环境变化。尽管一些研究关注了克隆植物对光照和养分因子的生长响应,但尚未深入全面了解克隆植物对光照和养分资源投资的分配策略。以根茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis)为研究对象,在温室实验中,将其独立分株种植于由2种光照强度(光照和遮阴)和4种养分水平(对照、低养分、中养分和高养分)交叉组成的8种处理组合中,研究了光照和养分对其生长繁殖及资源贮存策略的影响。结果表明,扁秆荆三棱的生长、无性繁殖及资源贮存性状均受到光照强度的显著影响,在遮阴条件下各生长繁殖性状指标被抑制。且构件的数目、长度等特征对养分差异的可塑性响应先于其生物量积累特征。在光照条件下,高养分处理的总生物量、叶片数、总根茎分株数、长根茎分株数、总根茎长、芽长度、芽数量等指标大于其他养分处理,而在遮阴条件下,其在不同养分处理间无显著差异,表明光照条件可影响养分对扁秆荆三棱可塑性的作用,且高营养水平不能补偿由于光照不足而导致的生长能力下降。光照强度显著影响了总根茎、总球茎及大、中、小球茎的生物量分配,遮阴条件下,总生物量减少了对地下部分根茎和球茎的分配,并将有限的生物量优先分配给小球茎。总根茎的生物量分配未对养分发生可塑性反应,而随着养分增加,总球茎分配下降,说明在养分受限的环境中球茎的贮存功能可缓冲资源缺乏对植物生长的影响。在相同条件下,根茎生物量对长根茎的分配显著大于短根茎,以保持较高的繁殖能力;而总球茎对有分株球茎的生物量分配小于无分株球茎,表明扁秆荆三棱总球茎对贮存功能的分配优先于繁殖功能。研究为进一步理解根茎型克隆植物对光强及基质养分环境变化的生态适应提供了依据。  相似文献   

17.
Global warming has led to substantially earlier spring leaf‐out in temperate‐zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf‐out by daylength and temperature using data from six tree species across 2,377 European phenological network ( www.pep725.eu ), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf‐out in all studied species. In warm springs when leaf‐out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming‐induced advancement of leaf‐out and protects the tree against precocious leaf‐out and the associated risks of late frosts. In contrast, longer‐than‐average daylength (in cold springs when leaf‐out is late) reduces the heat requirement for leaf‐out, ensuring that trees do not leaf‐out too late and miss out on large amounts of solar energy. These results provide the first large‐scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf‐out phenology in temperate deciduous trees.  相似文献   

18.
Ma L  Huang W  Guo C  Wang R  Xiao C 《PloS one》2012,7(4):e35165

Background

Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth.

Methodology/Principal Findings

To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe.

Conclusions/Significance

Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects.  相似文献   

19.
Seiwa K 《Annals of botany》2007,99(3):537-544
BACKGROUND AND AIMS: In spatially heterogeneous environments, a trade-off between seedling survival and relative growth rate may promote the coexistence of plant species. In temperate forests, however, little support for this hypothesis has been found under field conditions, as compared with shade-house experiments. Performance trade-offs were examined over a large resource gradient in a temperate hardwood forest. METHODS: The relationship between seedling survival and seedling relative growth rate in mass (RGR(M)) or height (RGR(H)) was examined at three levels of canopy cover (forest understorey, FU; small gap, SG; and large gap, LG) and at two microsites within each level of canopy cover (presence or absence of leaf litter) for five deciduous broad-leaved tree species with different seed sizes. KEY RESULTS: Within each species, both RGR(M) and RGR(H) usually increased with increasing light levels (in the order FU < SG < LG), whereas little difference was observed based on the presence or absence of litter. Seedling survival in FU was negatively correlated with both RGR(M) and RGR(H) in both LG and SG. The trade-off between high-light growth and low-light survival was more evident in the relationship with LG as compared with SG. An intraspecific trade-off between survival and RGR was observed along environmental gradients in Acer mono, whereas seedlings of Betula platyphylla var. japonica survived and grew better in LG. CONCLUSIONS: The results presented here strongly support the idea of light gradient partitioning (i.e. species coexistence) in spatially heterogeneous light environments in temperate forests, and that further species diversity would be promoted by increased spatial heterogeneity. The intraspecific trade-off between survival and RGR in Acer suggests that it has broad habitat requirements, whereas Betula has narrow habitat requirements and specializes in high-light environments.  相似文献   

20.
弱光照和富营养对苦草生长的影响   总被引:8,自引:0,他引:8  
本研究通过比较在不同光照和营养(3光照×3营养)水平下栽培的沉水植物苦草(Vallisneria natans L.)的生长及生化指标,探讨了富营养水体中弱光和高营养对苦草生长的影响.结果表明:弱光对苦草生长的抑制作用不受外源营养浓度的影响;而高营养对苦草生长的影响受到弱光胁迫程度的交互作用,表现为在光照较强的45%日光下为抑制作用,光照最弱的2.5%日光下为促进作用,在光强居间的10%日光下没有明显作用.植物组织总氮、总磷、氨态氮及游离氨基酸氮含量随光照减弱而增加,而可溶性总糖和淀粉含量减少;总磷、氨态氮、游离氨基酸氮及淀粉含量随营养增加而增加.因此弱光照和过高营养均对苦草生长产生明显抑制作用,两者具有交互作用,主要表现为弱光影响了高营养的抑制作用.在本研究中,高营养对苦草生长有抑制作用,但尚不能导致铵中毒或储存碳缺乏;可能由于10%和2.5%日光下,弱光胁迫对苦草的代谢已产生很大抑制作用,限制了高营养对苦草的抑制作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号