首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.  相似文献   

2.
3.
Isolated paddock trees are a common feature of agri-pastoral landscapes in south-eastern Australia. We assessed the impact of trees on soil nutrients by examining (1) changes in soil nutrients under clumped and isolated (living and dead) trees at four microsites corresponding with increasing distance from the trunk (trunk, mid-canopy, drip line, open), and (2) changes with depth under trees growing in clearly-defined clumps. We detected significantly greater concentrations of organic C, and total N and S under trees growing in clumps compared with either isolated living or dead trees. Levels of soluble Ca2+, K+ and Mg2+, pH, electrical conductivity (EC) and available P declined with increasing distance from the trees, but there were no significant trends for organic C, or total N and S. The concentration of most nutrients declined with depth, particularly at microsites close to the trunk, while pH increased with depth. We believe that differences in chemistry were largely driven by greater inputs of organic matter under the trees. This study reinforces the view that trees, whether scattered or in clumps, are important for soil nutrient conservation in agri-pastoral landscapes.  相似文献   

4.
Foliage construction cost (glucose requirement for formation of a unit foliar biomass, G , kg glu kg−1), chemical composition and morphology were examined along a light gradient across the canopies in five deciduous species, which ranked according to increasing shade-tolerance as Populus tremula < Fraxinus excelsior < Tilia cordata = Corylus avellana < Fagus sylvatica . Light conditions in the canopy were estimated by a hemispheric photographic technique, allowing ranking of sample locations according to long-term light input incident to the sampled leaves (relative irradiance). G and foliage carbon concentration increased with increasing relative irradiance in F. excelsior , T. cordata and C. avellana , but wereindependent of irradiance in F. sylvatica and P. tremula . However, if G of non-structural-carbohydrate-free dry mass was considered, it also increased with increasing relative irradiance in P. tremula . A positive correlation between the concentration of carbon-rich lignin and irradiance, probably a result of the acclimation to greater water stress at higher light, was the major reason for the light-dependence of G . Lignin concentrations were highest in more shade-tolerant species, resulting in greatest carbon concentrations in these species. Since carbon concentration and G are directly linked, the leaves of shade-tolerant species were also more expensive to construct. As the result of these effects, G increased faster with increasing leaf dry mass per area which was mainly determined by relative irradiance, in shade-tolerators. Given that shade-tolerant species had lower leaf dry mass per area at common irradiance and that this saturated at lower relative irradiance than leaf dry mass per area in the intolerant species, it was concluded that enhanced energy requirements for foliage construction might constrain species morphological plasticity and the upper limit of leaf dry mass per area attainable at high light.  相似文献   

5.
6.
7.
We examined the relationship between meristem allocation and plant size for four annual plant species: Arabidopsis thaliana, Arenaria serphyllifolia, Brassica rapa, and Chaenorrhinum minus. Gradients of light and nutrient availability were used to obtain a range of plant sizes for each of these species. Relative allocation to reproductive, inactive, and growth meristems were used to measure reproductive effort, apical dominance, and branching intensity, respectively. We measured allocation to each of these three meristem fates at weekly intervals throughout development and at final developmental stage. At all developmental stages reproductive effort and branching intensity tended to increase with increasing plant size (i.e., due to increasing resource availability) and apical dominance tended to decrease with increasing plant size. We interpret these responses as a strategy for plants to maximize fitness across a range of environments. In addition, significant differences in meristem response among species may be important in defining the range of habitats in which a species can exist and may help explain patterns of species competition and coexistence in habitats with variable resource availability.  相似文献   

8.
This paper examines morphological plasticity of clonal plants of contrasting habitats and of contrasting architectures in response to nutrient supply. The hypotheses were tested that plants from rich habitats possess greater plasticity in response to variation in resource supply than species from poor habitats, and that rhizomatous species are less plastic in their response than stoloniferous species. Two sympodial rhizomatous herbs (Carex flacca, C. hirta) and two monopodial stoloniferous herbs (Trifolium fragiferum, T. repens) were subjected to four levels of nutrient supply in a garden experiment. One of the two species of each genus (C. hirta, T. repens) is from fertile and the other from infertile habitats. We measured 1) whole plant characters: total plant dry weight, number of modules (product of a single apical meristem) and number of ramets; 2) ramet characters: ramet leaf area and ramet height; and 3) spacer characters: branches per module, length per module and length per module internode.All measured characters in the Trifolium species significantly responded to treatment: the values for all measured characters increased with higher levels of fertilization. The differences in plant characters between fertilization levels were larger in Trifolium repens than in T. fragiferum in terms of whole plant characters, ramet characters and stolon internode length. The two Carex species did not differ in their responses to treatment in terms of most characters measured. In ramet characters and in some whole plant characters the species from fertile habitats were more plastic than those from infertile habitats. In spacer characters this pattern was not found. Foraging could not be demonstrated unequivocally.Morphological plasticity in the stoloniferous (Trifolium) species was much larger than in the rhizomatous (Carex) species. This seems in accordance with a foremost storage function of rhizomes, as against a foremost explorative function of stolons.  相似文献   

9.
10.
Vegetation, leaf litter fall and soil pH were sampled repeatedly within semipermanent plots in a South-Swedish deciduous forest, 1935–1983. Leaf litter fall was summarized in a litter quality index. Vegetation types were differentiated along similar gradients in soil pH and leaf litter quality. The greatest shifts in dominance among field layer species were found in those plots where the quality of the leaf litter had improved. These plots also showed a halt in the general tendency towards a decreasing pH in the top soil.  相似文献   

11.
Although northern temperate forests are generally not considered phosphorus (P) limited, ecosystem P limitation may occur on highly weathered or strongly acidic soils where bioavailable inorganic P is low. In such environments, soil organisms may compensate by increasing the utilization of organic P via the production of extracellular enzymes to prevent limitation. In this study, we experimentally increased available P and/or pH in several acidic eastern deciduous forests underlain by glaciated and unglaciated soils in eastern Ohio, USA. We hypothesized that where inorganic P is low; soil microbes are able to access organic P by increasing production of phosphatase enzymes, thereby overcoming biogeochemical P limitations. We measured surface soil for: available P pools, N mineralization and nitrification rates, total C and N, enzymes responsible for C, N, and P hydrolysis, and microbial community composition (PLFA). Increasing surface soil pH a whole unit had little effect on microbial community composition, but increased N cycling rates in unglaciated soils. Phosphorus additions suppressed phosphatase activities over 60% in the unglaciated soils but were unchanged in the glaciated soils. All treatments had minimal influence on microbial biomass, but available pools of P strongly correlated with microbial composition. Microbes may be dependent on sources of organic P in some forest ecosystems and from a microbial perspective soil pH might be less important overall than P availability. Although our sampling was conducted less than 1 year after treatment initiation, microbial community composition was strongly influenced by available P pools and these effects may be greater than short-term increases in soil pH.  相似文献   

12.
K. Mengel 《Plant and Soil》1982,64(1):129-138
Summary In most arable soils the nitrate availability depends mainly on the quantity of nitrate present in the rooting zone at the beginning of the growing season. Easily mineralizable organic N and the release of non-exchangeable NH4 from clay minerals may in addition control the nitrogen availability during a season. In flooded soils, ammonium is the major form of nitrogen absorbed by plants. Ammonium dynamics in these soils is similar to that of potassium. The availability of both is controlled mainly by the intensity and buffering power for ammonium or potassium, respectively. Basically, intensity of the supply and buffering power for phosphate are the main factors determining the phosphate availability. The determination of the phosphate buffer power, especially in the root zone, however, remains to be difficult. Soil test methods should take into consideration the major factors and processes relevant to the availability of a particular plant nutrient.  相似文献   

13.
Seiwa K 《Annals of botany》2007,99(3):537-544
BACKGROUND AND AIMS: In spatially heterogeneous environments, a trade-off between seedling survival and relative growth rate may promote the coexistence of plant species. In temperate forests, however, little support for this hypothesis has been found under field conditions, as compared with shade-house experiments. Performance trade-offs were examined over a large resource gradient in a temperate hardwood forest. METHODS: The relationship between seedling survival and seedling relative growth rate in mass (RGR(M)) or height (RGR(H)) was examined at three levels of canopy cover (forest understorey, FU; small gap, SG; and large gap, LG) and at two microsites within each level of canopy cover (presence or absence of leaf litter) for five deciduous broad-leaved tree species with different seed sizes. KEY RESULTS: Within each species, both RGR(M) and RGR(H) usually increased with increasing light levels (in the order FU < SG < LG), whereas little difference was observed based on the presence or absence of litter. Seedling survival in FU was negatively correlated with both RGR(M) and RGR(H) in both LG and SG. The trade-off between high-light growth and low-light survival was more evident in the relationship with LG as compared with SG. An intraspecific trade-off between survival and RGR was observed along environmental gradients in Acer mono, whereas seedlings of Betula platyphylla var. japonica survived and grew better in LG. CONCLUSIONS: The results presented here strongly support the idea of light gradient partitioning (i.e. species coexistence) in spatially heterogeneous light environments in temperate forests, and that further species diversity would be promoted by increased spatial heterogeneity. The intraspecific trade-off between survival and RGR in Acer suggests that it has broad habitat requirements, whereas Betula has narrow habitat requirements and specializes in high-light environments.  相似文献   

14.
Ma L  Huang W  Guo C  Wang R  Xiao C 《PloS one》2012,7(4):e35165

Background

Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth.

Methodology/Principal Findings

To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe.

Conclusions/Significance

Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects.  相似文献   

15.
Nitrogen (N) fertilizer applied in the NH4+ form results in some degree of soil acidification, which could influence nutrient availability to plants and nutrient losses through leaching. Effects of various N rates (0 – 168 kg N ha-1 yr-1) on soil acidification and nutrient availability were investigated in a Riviera fine sand with 26-year-old white Marsh grapefruit (Citrus paradisi MacFadyen) trees. Soil pH significantly decreased with increasing NH4–N rates. Application of 112 kg N ha-1 yr-1 for four years decreased the pH by 0.7 to 1.7 unit. Soil acidification was greater when the NH4+ form of N fertilizer was applied as dry soluble granular material compared to fertigation or controlled release forms. The marked effect of NH4–N fertilization on the pH of the Riviera fine sand was due to its low buffering capacity. Soil acidification increased the concentration of extractable Fe and P but decreased that of K, Zn and Mn. Soil pH was positively correlated with concentration of Ca, but negatively with concentrations of Fe, Mn and Zn in six-month-old spring flush leaves of the grapefruit trees. Leaf P concentrations, however, were poorly correlated with soil pH. This study also demonstrated an increase in leaching of P and K below the grapefruit trees rootzone with a decrease in soil pH.  相似文献   

16.
There is much interest in understanding the nature of feedback mechanisms between plants and soil organisms in grazed ecosystems. In this study, we examine the effects of different intensities of defoliation on the growth of three dominant grass species, and observe how these plant responses relate to the biomass and activity of the microbial community in the root zone. Our data show that grassland plants with varying tolerances to grazing have markedly different growth responses to defoliation, and that these responses vary with the intensity of cutting. Defoliation of grasses which are tolerant to grazing, namely Festuca rubra and Cynosurus cristatus, leads to a reduction in root mass and an increase in the allocation of resources to shoots. In contrast, defoliation of a grass with low tolerance to grazing, Anthoxanthum odoratum, had little effect on root mass, but increased the relative allocation of resources below-ground. In all plant species, defoliation led to an increase in soil microbial biomass and C use efficiency in the root zone. This response was greatest in the root zone of A. odoratum and is likely to be related to changes in root exudation pattern following defoliation. The significance of these changes in relation to soil nutrient dynamics and plant nutrient uptake during regrowth require further exploration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
* Here we investigated photosynthetic traits of evergreen species under a deciduous canopy in a temperate forest and revealed the importance of CO2 assimilation during winter for annual CO2 assimilation. * Saplings were shaded by the canopy trees from spring through to autumn, but were less shaded during the winter months. Photosynthetic rates at light saturation (Aarea) were lower during winter than during the growing season. Aarea was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus during the winter, but differed little during summer and autumn. * Estimated daily CO2 assimilation (Aday) was higher during the winter than during the growing season in Camellia, Ilex and Photinia but was higher than that during the growing season only at the beginning and end of winter in Castanopsis, Cleyera and Quercus. Aday was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus but differed little among them during the growing season. * These results reveal the importance of winter CO2 assimilation for the growth of Camellia, Ilex and Photinia. Furthermore, differences in annual CO2 assimilation among species are strongly modified by species-specific photosynthetic traits during the winter under deciduous canopy trees.  相似文献   

18.
19.
Plant responses to environmental changes are associated with electrical excitability and signaling; automatic and continuous measurements of electrical potential differences (ΔEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. The generation and conduction of electrochemical impulses within plant different tissues and organs, resulting from abiotic and biotic changes in environmental conditions is reported. In this work, electrical potential differences are monitored continuously using Ag/AgCl microelectrodes, inserted 5 mm deep into sapwood at two positions in the trunks of several Avocado trees. Electrodes are referenced to a non polarisable Ag/AgCl microelectrode installed 20 cm deep in the soil. Systematic patterns of ΔEP during absolute darkness, day-night cycles and different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions.Key words: plant electrical potential, light and dark cycles, water availability, plant signaling, avocado trees, plant sensors, irrigation automation  相似文献   

20.
Winter snowpack in seasonally snow-covered regions plays an important role in moderating ecosystem processes by insulating soil from freezing air temperatures. However, climate models project a decline in snowpack at mid and high latitudes over the next century. We conducted a snow removal experiment in a temperate deciduous forest at Harvard Forest in Massachusetts, USA to quantify the effects of a reduced winter snowpack and increased soil freezing on total soil respiration and its bulk (i.e. heterotrophic) and root-rhizosphere components. Snow removal increased soil freezing severity by more than three-fold, which resulted in a 27.6% increase in annual total soil respiration (p?=?0.058). Across our plots and years of this study, we found that the severity, rather than simply the presence of soil freezing, was the primary driver of the soil respiration response to reduced winter snowpack. Bulk soil respiration made the largest contribution to total soil respiration with root-rhizosphere respiration contributing up to 26.1?±?6.5% of total soil respiration across plot types and years. Snow removal significantly increased fine root mortality (p?=?0.03), which was positively correlated with soil frost depth and duration (p?=?0.068, \({\text{R}}_{{{\text{LMM}}(m)}}^{ 2}\)?=?0.46), rates of total soil respiration (p?=?0.075; \({\text{R}}_{{{\text{LMM}}(m)}}^{ 2}\)?=?0.27) and the contribution of root-rhizosphere respiration to total soil respiration (p?=?0.004; \({\text{R}}_{{{\text{LMM}}(m)}}^{ 2}\)?=?0.58). We conclude that increased rates of soil respiration in response to soil freezing are driven by plant-mediated processes, whereby soil frost-induced root mortality stimulates respiration through decomposition of root necromass with additional enhancements possibly related to priming of soil organic matter decomposition and elevated rates of root respiration associated with growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号