首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.  相似文献   

2.
SNARE proteins mediate the fusion of lipid bilayers by the directed assembly of coiled-coil domains arising from apposing membranes. We have utilized inverted cone-shaped lipids, antagonists of the necessary membrane deformation during fusion to characterize the extent and range of SNARE assembly up to the moment of stalk formation between bilayers. The inverted cone-shaped lipid family of acyl-CoAs specifically inhibits the completion of fusion in an acyl-chain length-dependent manner. Removal of acyl-CoA from the membrane relieves the inhibition and initiates a burst of membrane fusion with rates exceeding any point in the control curves lacking acyl-CoA. This burst indicates the accumulation of semi-assembled fusion complexes. These preformed complexes are resistant to cleavage by botulinum toxin B and thus appear to have progressed beyond the "loosely zippered" state of docked synaptic vesicles. Surprisingly, application of the soluble domain of VAMP2, which blocks SNARE assembly by competing for binding on the available t-SNAREs, blocks recovery from the acyl-CoA inhibition. Thus, complexes formed in the presence of a lipidic antagonist to fusion are incompletely assembled, suggesting that the formation of tightly assembled SNARE pairs requires progression all the way through to membrane fusion. In this regard, physiologically docked exocytic vesicles may be anchored by a highly dynamic and potentially even reversible SNAREpin.  相似文献   

3.
The involvement of contacting and distal lipid monolayers in different stages of protein-mediated fusion was studied for fusion mediated by influenza virus hemagglutinin. Inclusion of non-bilayer lipids in the composition of the liposomes bound to hemagglutinin-expressing cells affects fusion triggered by low pH. Lysophosphatidylcholine added to the outer membrane monolayers inhibits fusion. The same lipid added to the inner monolayer of the liposomes promotes both lipid and content mixing. In contrast to the inverted cone-shaped lysophosphatidylcholine, lipids of the opposite effective shape, oleic acid or cardiolipin with calcium, present in the inner monolayers inhibit fusion. These results along with fusion inhibition by a bipolar lipid that does not support peeling of one monolayer of the liposomal membrane from the other substantiate the hypothesis that fusion proceeds through a local hemifusion intermediate. The transition from hemifusion to the opening of an expanding fusion pore allows content mixing and greatly facilitates lipid mixing between liposomes and cells.  相似文献   

4.
Stiasny K  Heinz FX 《Journal of virology》2004,78(16):8536-8542
Enveloped viruses enter cells by fusion of their own membrane with a cellular membrane. Incorporation of inverted-cone-shaped lipids such as lysophosphatidylcholine (LPC) into the outer leaflet of target membranes has been shown previously to impair fusion mediated by class I viral fusion proteins, e.g., the influenza virus hemagglutinin. It has been suggested that these results provide evidence for the stalk-pore model of fusion, which involves a hemifusion intermediate (stalk) with highly bent outer membrane leaflets. Here, we investigated the effect of inverted-cone-shaped LPCs and the cone-shaped oleic acid (OA) on the membrane fusion activity of a virus with a class II fusion protein, the flavivirus tick-borne encephalitis virus (TBEV). This study included an analysis of lipid mixing, as well as of the steps preceding or accompanying fusion, i.e., binding to the target membrane and lipid-induced conformational changes in the fusion protein E. We show that the presence of LPC in the outer leaflet of target liposomes strongly inhibited TBEV-mediated fusion, whereas OA caused a very slight enhancement, consistent with a fusion mechanism involving a lipid stalk. However, LPC also impaired the low-pH-induced binding of a soluble form of the E protein to liposomes and its conversion into a trimeric postfusion structure that requires membrane binding at low pH. Because inhibition is already observed before the lipid-mixing step, it cannot be determined whether impairment of stalk formation is a contributing factor in the inhibition of fusion by LPC. These data emphasize, however, the importance of the composition of the target membrane in its interactions with the fusion peptide that are crucial for the initiation of fusion.  相似文献   

5.
Rabies virus-induced membrane fusion pathway   总被引:1,自引:0,他引:1  
Fusion of rabies virus with membranes is triggered at low pH and is mediated by the viral glycoprotein (G). The rabies virus-induced fusion pathway was studied by investigating the effects of exogenous lipids having various dynamic molecular shapes on the fusion process. Inverted cone-shaped lysophosphatidylcholines (LPCs) blocked fusion at a stage subsequent to fusion peptide insertion into the target membrane. Consistent with the stalk-hypothesis, LPC with shorter alkyl chains inhibited fusion at lower membrane concentrations and this inhibition was compensated by the presence of oleic acid. However, under suboptimal fusion conditions, short chain LPCs, which were translocated in the inner leaflet of the membranes, considerably reduced the lag time preceding membrane merging, resulting in faster kinetics of fusion. This indicated that the rate limiting step for fusion is the formation of a fusion pore in a diaphragm of restricted hemifusion. The previously described cold-stabilized prefusion complex was also characterized. This intermediate is at a well-advanced stage of the fusion process when the hemifusion diaphragm is destabilized, but lipid mixing is still restricted, probably by a ring-like complex of glycoproteins. I provide evidence that this state has a dynamic character and that its lipid organization can reverse back to two lipid bilayers.  相似文献   

6.
Lysolipids and fatty acids are the natural products formed by the hydrolysis of phospholipids. Lysolipids and fatty acids form micelles in solution and acts as detergents in the presence of lipid membranes. In this study, we investigate the detergent strength of a homologous series of lyso-phosphatidylcholine lipids (LPCs) on 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine (POPC) lipid membranes by use of isothermal titration calorimetry and vesicle fluctuation analysis. The membrane partition coefficient (K) and critical micelle concentration (cmc) are determined by isothermal titration calorimetry and found to obey an inverse proportionality relation (cmc·K ∼ 0.05-0.3). The partition coefficient and critical micelle concentration are used for the analysis of the effect of LPCs on the membrane bending rigidity. The dependency of the bending rigidity on LPC membrane coverage has been analyzed in terms of a phenomenological model based on continuum elastic theory, which yields information about the curvature-inducing properties of the LPC molecule. The results reveal: 1), an increase in the partition coefficient with increasing LPC acyl-chain length; and 2), that the degree of acyl-chain mismatch between LPC and POPC determines the magnitude of the membrane mechanical perturbation per LPC molecule in the membrane. Finally, the three-stage model describing detergent membrane interaction has been extended by a parameter DMCI, which governs the membrane curvature stability in the detergent concentration range below the cmc-value of the LPC molecule.  相似文献   

7.
Investigations were carried out on the effect of plasma membrane lipid modifications on the fusogenic capacity of control and ras-transformed fibroblasts. The plasma membrane lipid composition was modified by treatment of cells with exogenous phospholipases C and D, sphingomyelinase and cyclodextrin. The used enzymes hydrolyzed definite membrane lipids thus inducing specific modifications of the lipid composition while cyclodextrin treatment reduced significantly the level of cholesterol. The cells with modified membranes were used for assessment of their fusogenic capacity with model membranes with a constant lipid composition. Treatment with phospholipases C and D stimulated the fusogenic potential of both cell lines whereas the specific reduction of either sphingomyelin or cholesterol induced the opposite effect. The results showed that all modifications of the plasma membrane lipid composition affected the fusogenic capacity irrespective of the initial differences in the membrane lipid composition of the two cell lines. These results support the notion that the lipid composition plays a significant role in the processes of membrane-membrane fusion. This role could be either direct or through modulation of the activity of specific proteins which regulate membrane fusion.  相似文献   

8.
While the specificity and timing of membrane fusion in diverse physiological reactions, including virus–cell fusion, is determined by proteins, fusion always involves the merger of membrane lipid bilayers. We have isolated a lipid-dependent stage of cell–cell fusion mediated by influenza hemagglutinin and triggered by cell exposure to mildly acidic pH. This stage preceded actual membrane merger and fusion pore formation but was subsequent to a low pH–induced change in hemagglutinin conformation that is required for fusion. A low pH conformation of hemagglutinin was required to achieve this lipid-dependent stage and also, downstream of it, to drive fusion to completion. The lower the pH of the medium applied to trigger fusion and, thus, the more hemagglutinin molecules activated, the less profound was the dependence of fusion on lipids. Membrane-incorporated lipids affected fusion in a manner that correlated with their dynamic molecular shape, a characteristic that determines a lipid monolayer's propensity to bend in different directions. The lipid sensitivity of this stage, i.e., inhibition of fusion by inverted cone–shaped lysophosphatidylcholine and promotion by cone-shaped oleic acid, was consistent with the stalk hypothesis of fusion, suggesting that fusion proteins begin membrane merger by promoting the formation of a bent, lipid-involving, stalk intermediate.  相似文献   

9.
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.  相似文献   

10.
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.  相似文献   

11.
The effect of mystatin on the plasmic membranes of the rabbit liver after intravenous administration of the antibiotic to the animals in a dose of 5 mg/kg was studied. It was found that intravenous administration of nystatin had no effect on the quantitative content of protein, lipids and nucleic acids in the plasmic membranes of the liver. The method of electrophoresis in polyacrylamide gel revealed significant changes in the composition of the liver membrane protein due to the treatment with nystatin. The effect of nystatin on the composition of lipids and fatty acids contained in the membrane lipids was also investigated. The data of the thin layer chromatography showed that nystatin did not affect the qualitative composition and the content of separate lipid fractions in the lipids of the liver plasmic membranes. However, the fatty acid analysis of the membrane lipids after intravenous administration of nystatin revealed a number of qualitative and quantitative differences in the composition of the lipid fatty acids of the membranes tested. The results showed that nystatin affected the membrane structures of the rabbit liver cells.  相似文献   

12.
Yeast vacuole fusion requires the formation of SNARE bundles between membranes. Although the function of vacuolar SNAREs is controlled in part by regulatory lipids, the exact role of the membrane in regulating fusion remains unclear. Because SNAREs are membrane‐anchored and transmit the force required for fusion to the bilayer, we hypothesized that the lipid composition and curvature of the membrane aid in controlling fusion. Here, we examined the effect of altering membrane fluidity and curvature on the functionality of fusion‐incompetent SNARE mutants that are thought to generate insufficient force to trigger the hemifusion–fusion transition. The hemifusion–fusion transition was inhibited by disrupting the 3Q:1R stoichiometry of SNARE bundles with the mutant SNARE Vam7pQ283R. Similarly, replacing the transmembrane domain of the syntaxin homolog Vam3p with a lipid anchor allowed hemifusion, but not content mixing. Hemifusion‐stalled reactions containing either of the SNARE mutants were stimulated to fuse with chlorpromazine, an amphipathic molecule that alters membrane fluidity and curvature. The activity of mutant SNAREs was also rescued by the overexpression of SNAREs, thus multiplying the force transferred to the membrane. Thus, we conclude that either increasing membrane fluidity, or multiplying SNARE‐generated energy restored the fusogenicity of mutant SNAREs that are stalled at hemifusion. We also found that regulatory lipids differentially modulated the complex formation of wild‐type SNAREs. Together, these data indicate that the physical properties and the lipid composition of the membrane affect the function of SNAREs in promoting the hemifusion–fusion transition.  相似文献   

13.
Lipids in biological membrane fusion   总被引:8,自引:0,他引:8  
The results reviewed suggest that membrane fusion in diverse biological fusion reactions involves formation of some specific intermediates: stalks and pores. Energy of these intermediates and, consequently, the rate and extent of fusion depend on the propensity of the corresponding monolayers of membranes to bend in the required directions.Proteins and peptides can control the bending energy of membrane monolayers in a number of ways. Monolayer lipid composition may be altered by different phospholipases [50, 85, 90], flipases and translocases [4, 50]. Proteins and peptides can change monolayer spontaneous curvature or hydrophobic void energy by direct interaction with membrane lipids [20, 32, 111]. Proteins may also provide some barriers for lipid diffusion in the plane of the monolayer [83, 141]. If diffusion of lipids at some specific membrane sites (e.g., in the vicinity of fusion protein) is somehow hindered, the energy of the bent fusion intermediates would reflect the elastic properties of these particular sites rather than the spontaneous curvature of the whole monolayers. Proteins may deform membranes while bringing them locally into close contact. The alteration of the geometric (external) curvature will certainly change the elastic energy of the initial state and, thus affect the energetic barriers of the formation of the intermediates [143]. In addition, the area and the energy of the stalk can be reduced by preliminary bending of the contacting membranes [111]. The possible effects of proteins and polymers on local elastic properties and local shapes of the membranes have been recently analyzed [22, 39, 45, 63]. These studies may provide a good basis for future development of theoretical models of protein-mediated fusion.  相似文献   

14.
Interplay between lipids and the proteinaceous membrane fusion machinery   总被引:1,自引:0,他引:1  
For membrane fusion to occur, opposed lipid bilayers initially establish a fusion pore, often followed by complete mixing of the fusing membranes. Contemporary views suggest that during fusion lipid bilayers are continuous passive platforms that are disrupted and remodeled by catalytic proteins. Some models propose that even the architecture and composition of the fusion pore might be dominated by proteins rather than lipids. Hence, lipids have no regulatory contribution to this process; they simply adapt their shape passively for filling space between otherwise autonomous protein machineries.However, an increasing number of experimental findings indicate that membrane fusion critically depends on a variety of lipids and lipid derivatives. Therefore, a purely proteocentric view describes fusion mechanisms insufficiently. Instead, lipids have functions probably at different levels, as (i) a general influence on the propensity of lipid bilayers to fuse, (ii) a role in recruiting exocytotic proteins to the plasma membrane, (iii) a role in organizing membrane domains for fusion and (iv) direct regulatory effects on fusion protein complexes. In this review we have made an attempt to bring together the large body of evidence supporting a major role for lipids in membrane fusion either directly or indirectly.  相似文献   

15.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

16.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

17.
Lipid composition of the isolated rat intestinal microvillus membrane   总被引:13,自引:4,他引:9  
1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.  相似文献   

18.
At low surface concentrations that permit formation of impermeable membranes, neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptor (SNARE) proteins form a stable, parallel, trans complex when vesicles are brought into contact by a low concentration of poly(ethylene glycol) (PEG). Surprisingly, formation of a stable SNARE complex does not trigger fusion under these conditions. However, neuronal SNAREs do promote fusion at low protein/lipid ratios when triggered by higher concentrations of PEG. Promotion of PEG-triggered fusion required phosphatidylserine and depended only on the surface concentration of SNAREs and not on the formation of a trans SNARE complex. These results were obtained at protein surface concentrations reported for synaptobrevin in synaptic vesicles and with an optimally fusogenic lipid composition. At a much higher protein/lipid ratio, vesicles joined by SNARE complex slowly mixed lipids at 37 degrees C in the absence of PEG, in agreement with earlier reports. However, vesicles containing syntaxin at a high protein/lipid ratio (>or=1:250) lost membrane integrity. We conclude that the neuronal SNARE complex promotes fusion by joining membranes and that the individual proteins syntaxin and synaptobrevin disrupt membranes so as to favor formation of a stalk complex and to promote conversion of the stalk to a fusion pore. These effects are similar to the effects of viral fusion peptides and transmembrane domains, but they are not sufficient by themselves to produce fusion in our in vitro system at surface concentrations documented to occur in synaptic vesicles. Thus, it is likely that proteins or factors other than the SNARE complex must trigger fusion in vivo.  相似文献   

19.
The final modifications that the spermatozoa undergo correspond with the destabilization of their plasma membrane. This indispensable step facilitates the fusion of membranes and primes the signal transduction during fertilization. This destabilization is composed of a series of changes and modulation of the lipids in membranes such as cholestérol, phospholipids and glycolipids. Several differences exist in the lipid composition of the plasma, acrosome, nuclear and mitochondrial membranes of spermatozoa. The principal membrane phospholipids are phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin. Plasma membrane of sperm is also rich in polyunsaturated fatty acids (PUFA) linked to phospholipids. Such as C18∶2n?6, C20∶4n?6 and large amounts of docosahexaenoic acid (C22∶6n?6). The amount of membrane lipids in human sperm varies considerably between patients. This variation, could influence certain functional properties of the sperm cells such as their ability to undergo capacitation, the acrosome reaction and the fusion between sperm and oocyte membranes. The lipid composition of the human sperm cell can be altered during the process of freezing-thawing. A significant decrease in phospholipids (phosphatidyl choline, phosphatidyl ethanolamine), and PUFA in particular docosahexaenoic acid and arachidonic acid was observed. Human spermatozoa have a molar cholestérol/phopholipid ratio ≤1.0, and reduces during capacitation due to loss of cholestérol. In addition, the decrease in the levels of cholestérol and the methylation of phospholipids is involved in the modification of membrane fluidity and in the maturation of the sperm plasma membrane receptors. Therefore it seems that the methylation is important for the fusion between sperm and oocyte membranes. Intrinsic sperm phospholipase A2 also plays a role in the destabilization of the plasma membrane by producing of lysophospholipid. Therefore this enzyme and free fatty acids are believed to play a role in the acrosome reaction, an indispensable event facilitating the fusion between sperm and oocyte membranes.  相似文献   

20.
Here we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes. In the latter, an additional pH-dependent lipid salt formation between anionic and cationic lipids must occur, as indicated by the depletion of membrane-bound ions in a zone around pH 5. Amphoteric liposomes fuse under these conditions but form lamellar structures at both lower and higher pH values. The integration of these observations into the classic lipid shape theory yielded a quantitative link between lipid and solvent composition and the physical state of the lipid assembly. The key parameter of the new model, κ(pH), describes the membrane phase behavior of charged membranes in response to their ion loading in a quantitative way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号