首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We used the cloned tolC gene to identify, locate, and purify its gene product. Strains carrying pPR13 or pPR42 overproduced a cell envelope protein (molecular weight, 52,000). A protein of the same molecular weight was identified in radioactively labeled minicells carrying pPR13; this protein was absent in pPR11-carrying minicells. This protein was the tolC gene product, since pPR11 differed from pPR13 in having a Tn10 insertion in the tolC gene. The protein seen in cell envelopes of whole cells (TolC protein) was found to exist in an aggregated state in the outer membrane; under conditions in which OmpC and OmpF were peptidoglycan associated, TolC protein was not likewise associated. Using these properties, we purified the TolC protein and determined the sequence of twelve amino acids from the amino-terminal end. The location of the TolC protein in the outer membrane was consistent with the proposed function for the tolC gene product as a processing protein in the outer membrane.  相似文献   

3.
A Tn5 insertion in tolC eliminated microcin J25 production. The mutation had little effect on the expression of the microcin structural gene and presumably acted by blocking microcin secretion. The tolC mutants carrying multiple copies of the microcin genes were less immune to the microcin. TolC is thus likely a component of a microcin export complex containing the McjD immunity protein, an ABC exporter.  相似文献   

4.
Xylella fastidiosa infects a wide range of hosts and causes serious diseases on some of them. The complete genomic sequences of both a citrus variegated chlorosis (CVC) and a Pierce's disease (PD) strain revealed two type I protein secretion plus two multidrug resistance efflux systems, and all evidently were dependent on a single tolC homolog. Marker exchange mutagenesis of the single tolC gene in PD strain Temecula resulted in a total loss of pathogenicity on grape. Importantly, the tolC- mutant strains were not recovered after inoculation into grape xylem, strongly indicating that multidrug efflux is critical to survival of this fastidious pathogen. Both survival and pathogenicity were restored by complementation using tolC cloned in shuttle vector pBBR1MCS-5, which was shown to replicate autonomously, without selection, for 60 days in Temecula growing in planta. These results also demonstrate the ability to complement mutations in X. fastidiosa.  相似文献   

5.
6.
The ability of Salmonella to invade tissue culture cells is correlated with virulence. Therefore, the tissue culture invasion model has been used extensively to study this process and to identify the bacterial genes involved and their products. Described here is the further characterization of a Salmonella enteritidis mutant (SM6T) originally identified as non-invasive for tissue culture cells. A chromosomal DNA fragment complementing this defect was cloned and sequenced. The derived protein sequence is 89% identical to TolC from Escherichia coli , an outer membrane protein required for the signal peptide-independent transport of α-haemolysin and colicin V. Therefore, sinA was renamed tolC and is referred to in this text as tolC s to distinguish it from tolC of E. coli TolCs and TolC are functionally similar since tolC can complement the invasion-defective phenotype of a tolCs mutant, and tolCs is required for export of α-haemolysin by Salmonella . The tolC s mutant is avirulent for mice when administered by the oral route, suggesting that the gene is important for virulence. Further characterization of the tolCs mutant indicated that like tolC mutants it is more sensitive than the wild-type strain to various detergents, antibiotics and dyes. This mutant is more sensitive to Triton X-100 only when associated with the monolayer, and the invasion-defective phenotype appears to be an artifact of this sensitivity. In addition, the tolCs mutant is more sensitive to the bactericidal activity of human serum. Therefore, the avirulent phenotype could be the result of an inability to secrete a necessary virulence factor, or an increased sensitivity to complement and detergents as a result of a subtle alteration in the lipopolysaccharide (LPS) associated with tolC mutations.  相似文献   

7.
When Legionella pneumophila grows on agar plates, it secretes a surfactant that promotes flagellum- and pilus-independent "sliding" motility. We isolated three mutants that were defective for surfactant. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella surfactant is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a surfactant, confirming that TolC promotes surfactant secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a surfactant. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted surfactant, suggesting that TolC and T2S conjoin to mediate surfactant secretion, with one being the conduit for surfactant export and the other the exporter of a molecule that is required for induction or maturation of surfactant synthesis/secretion. Although the surfactant was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the surfactant provides L. pneumophila with a selective advantage over other legionellae in the natural environment.  相似文献   

8.
The ability of an isogenic set of mutants of Salmonella enterica serovar Typhimurium L354 (SL1344) with defined deletions in genes encoding components of tripartite efflux pumps, including acrB, acrD, acrF and tolC, to colonize chickens was determined in competition with L354. In addition, the ability of L354 and each mutant to adhere to, and invade, human embryonic intestine cells and mouse monocyte macrophages was determined in vitro. The tolC and acrB knockout mutants were hyper-susceptible to a range of antibiotics, dyes and detergents; the tolC mutant was also more susceptible to acid pH and bile and grew more slowly than L354. Complementation of either gene ablated the phenotype. The tolC mutant poorly adhered to both cell types in vitro and was unable to invade macrophages. The acrB mutant adhered, but did not invade macrophages. In vivo, both the acrB mutant and the tolC mutant colonized poorly and did not persist in the avian gut, whereas the acrD and acrF mutant colonized and persisted as well as L354. These data indicate that the AcrAB-TolC system is important for the colonization of chickens by S. Typhimurium and that this system has a role in mediating adherence and uptake into target host cells.  相似文献   

9.
10.
TolC is the outer-membrane component of several multidrug resistance (MDR) efflux pumps and plays an important role in the survival and virulence of many gram-negative bacterial animal pathogens. We have identified and characterized the outer-membrane protein-encoding gene tolC in the bacterial plant pathogen Erwinia chrysanthemi EC16. The gene was found to encode a 51-kDa protein with 70% identity to its Escherichia coli homologue. The E. chrysanthemi gene was able to functionally complement the E. coli tolC gene with respect to its role in MDR efflux pumps. A tolC mutant of E. chrysanthemi was found to be extremely sensitive to antimicrobial agents, including several plant-derived chemicals. This mutant was unable to grow in planta and its ability to cause plant tissue maceration was severely compromised. The tolC mutant was shown to be defective in the efflux of berberine, a model antimicrobial plant chemical. These results suggest that by conferring resistance to the antimicrobial compounds produced by plants, the E. chrysanthemi tolC plays an important role in the survival and colonization of the pathogen in plant tissue.  相似文献   

11.
Sinorhizobium meliloti is capable of establishing a symbiotic nitrogen fixation relationship with Medicago sativa. During this process, it must cope with diverse environments and has evolved different types of transport systems that help its propagation in the plant roots. TolC protein family members are the outer-membrane components of several transport systems involved in the export of diverse molecules, playing an important role in bacterial survival. In this work, we have characterized the protein TolC from S. meliloti 2011. An insertional mutation in the tolC gene strongly affected the resistance phenotype to antimicrobial agents and induced higher susceptibility to osmotic and oxidative stresses. Immunodetection experiments and comparison of the extracellular proteins present in the supernatant of the wild-type versus tolC mutant strains showed that the calcium-binding protein ExpE1, the endoglycanase ExsH, and the product of open reading frame SMc04171, a putative hemolysin-type calcium-binding protein, are secreted by a TolC-dependent secretion system. In the absence of TolC, neither succinoglycan nor galactoglucan were detected in the culture supernatant. Moreover, S. meliloti tolC mutant induced a reduced number of nonfixing nitrogen nodules in M. sativa roots. Taken together, our results confirm the importance of TolC in protein secretion, exopolysaccharide biosynthesis, antimicrobials resistance, and symbiosis.  相似文献   

12.
Studies using tolC mutant derivatives of deep rough (rfa) mutants indicate that tolC and rfa mutations have an additive effect with respect to their sensitivity to hydrophobic agents, suggesting that they are not acting through a mutual mechanism to alter the permeability of the outer membrane.  相似文献   

13.
Plasmid-associated bacteriocin production in a JK-type coryneform bacterium   总被引:1,自引:0,他引:1  
Abstract The outer membrane of Escherichia coli K-12 has a variety of proteolytic activities. We were able to label several outer membrane proteins with [3H]diisopropylfluorophosphate (DFP). This suggests that they are serine proteases. The number of labelled proteins detected varied with the E. coli K-12 strain used. Strains bearing a tolC mutation, in addition, gave better labelling and/or had more labelled proteins. A previously described [3H]DFP-labelled outer membrane protein was shown not to be the TolC protein since it has a slightly lower M r, it is not labelled more intensely in a TolC-overproducing strain, and it is still labelled in tolC mutant strains.  相似文献   

14.
TolC is a minor outer membrane protein of Escherichia coli K 12 and is initially synthesized as a precursor. A distinct intermediate polypeptide of Mr about 46 000 was consistently observed at the initial stages of biosynthesis. The further elongation of this peptide can be blocked by chloramphenicol. We have investigated the cause of the temporary accumulation of the 46 000-Mr intermediate and we postulate that the presence of a rare codon AGA (Arg) at codon 402 of the tolC mRNA halts translating ribosomes owing to a limiting amount of the tRNAArg (AGA) species in the cell. The translation of tolC mRNA can be increased by providing T4 tRNAArg (AGA), encoded on a plasmid.  相似文献   

15.
16.
We investigated the mechanism responsible for bile susceptibility in three deoxycholate-sensitive (DCs) strains of Salmonella enterica subspecies enterica serovar Pullorum isolated in 1958 in Japan. Of the genes encoding the AcrAB-TolC efflux system, the expression of acrB mRNA was 10-fold lower in the DCs strains than in a deoxycholate-resistant (DCr) strain, whereas those of the acrA and tolC genes were two-fold lower. These results suggested that low expression of acrB was strongly correlated with bile susceptibility in the DCs strains. In addition, the increase in tolC expression levels was not detected in the DCr mutants derived from the DCs strains, suggesting that difference in the expression levels of tolC is not associated with bile susceptibility.  相似文献   

17.
The level of DNA supercoiling is crucial for many cellular processes, including gene expression, and is determined, primarily, by the opposing actions of two enzymes: topoisomerase I and DNA gyrase. Escherichia coli strains lacking topoisomerase I (topA mutants) normally fail to grow in the absence of compensatory mutations which are presumed to relax DNA. We have found that, in media of low osmolarity, topA mutants are viable in the absence of any compensatory mutation, consistent with the view that decreased extracellular osmolarity causes a relaxation of cellular DNA. At higher osmolarity most compensatory mutations, as expected, are in the gyrA and gyrB genes. The only other locus at which compensatory mutations arise, designated toc, is shown to involve the amplification of a region of chromosomal DNA which includes the tolC gene. However, amplification of tolC alone is insufficient to explain the phenotypes of toc mutants. tolC insertion mutations alter the distribution of plasmid topoisomers in vivo. This effect is probably indirect, possibly a result of altered membrane structure and an alteration in the cell's osmotic barrier. As tolC is a highly pleiotropic locus, affecting the expression of many genes, it is possible that some of the TolC phenotypes are a direct result of this topological change. The possible relationship between toc and tolC mutations, and the means by which tolC mutations might affect DNA supercoiling, are discussed.  相似文献   

18.
The Serratia marcescens haemophore HasA is secreted by an ABC exporter comprising three envelope proteins. The ABC protein (ATP-binding cassette) HasD and the MFP protein (membrane fusion protein) HasE but not the outer membrane component have been isolated previously. In Escherichia coli , TolC, the outer membrane component of the haemolysin transporter, can form a hybrid exporter with HasD and HasE. This hybrid secretes HasA and the very similar metalloproteases from S. marcescens and Erwinia chrysanthemi . By analogy, the genuine exporter was predicted to secrete metalloproteases. The hasF gene was thus cloned from S. marcescens into an E. coli tolC mutant carrying hasD and hasE genes, by screening for a proteolytic phenotype on skimmed-milk plates. hasF encodes a protein sharing 74% identity with the E. coli TolC protein. Anti-TolC antibodies cross-reacted with a protein with an apparent molecular weight of 53 kDa in E. coli expressing hasF and in S. marcescens . hasF is unlinked to the has cluster and, unlike the has operon, is not iron regulated. hasF complements some of the tolC phenotypes, including drug- and detergent sensitivities and haemolysin secretion but not colicin E1 uptake. This suggests that the various functions of TolC could correspond to distinct domains on the protein.  相似文献   

19.
Heat shock gene expression is induced by a variety of environmental stresses, including the presence of many chemicals. To address the utility of this response for pollutant detection, two Escherichia coli heat shock promoters, dnaK and grpE, were fused to the lux genes of Vibrio fischeri. Metals, solvents, crop protection chemicals, and other organic molecules rapidly induced light production from E. coli strains containing these plasmid-borne fusions. Introduction of an outer membrane mutation, tolC, enhanced detection of a hydrophobic molecule, pentachlorophenol. The maximal response to pentachlorophenol in the tolC+ strain was at 38 ppm, while the maximal response in an otherwise isogenic tolC mutant was at 1.2 ppm. Stress responses were observed in both batch and chemostat cultures. It is suggested that biosensors constructed in this manner may have potential for environmental monitoring.  相似文献   

20.
Extracellular electron transfer can play an important role in microbial respiration on insoluble minerals. The humic acid analog anthraquinone-2,6-disulfonate (AQDS) is commonly used as an electron shuttle during studies of extracellular electron transfer. Here we provide genetic evidence that AQDS enters Shewanella oneidensis strain MR-1 and causes cell death if it accumulates past a critical concentration. A tolC homolog protects the cell from toxicity by mediating the efflux of AQDS. Electron transfer to AQDS appears to be independent of the tolC pathway, however, and requires the outer membrane protein encoded by mtrB. We suggest that there may be structural and functional relationships between quinone-containing electron shuttles and antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号