首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.  相似文献   

2.
DNA topoisomerase (topo) I is a nuclear enzyme that plays an important role in DNA metabolism. Based on conserved nuclear targeting sequences, four classic nuclear localization signals (NLSs) have been proposed at the N terminus of human topo I, but studies with yeast have suggested that only one of them (amino acids (aa) 150-156) is sufficient to direct the enzyme to the nucleus. In this study, we expressed human topo I fused to enhanced green fluorescent protein (EGFP) in mammalian cells and demonstrated that whereas aa 150-156 are sufficient for nuclear localization, the nucleolar localization requires aa 157-199. More importantly, we identified a novel NLS within aa 117-146. In contrast to the classic NLSs that are rich in basic amino acids, the novel NLS identified in this study is rich in acidic amino acids. Furthermore, this novel NLS alone is sufficient to direct not only EGFP into the nucleus but also topo I; and the EGFP.topo I fusion driven by the novel NLS is as active in vivo as the wild-type topo I in response to the topo I inhibitor topotecan. Together, our results suggest that human topo I carries two independent NLSs that have opposite amino acid compositions.  相似文献   

3.
4.
The decatenation activity of DNA topoisomerase II is essential for viability as eukaryotic cells traverse mitosis. Phosphorylation has been shown to stimulate topoisomerase II activity in vitro. Here we show that topoisomerase II is a phosphoprotein in yeast and that the level of incorporated phosphate is significantly higher at mitosis than in G1. Comparison of tryptic phosphopeptide maps reveals that the major phosphorylation sites in vivo are targets for casein kinase II. Incorporation of phosphate into topoisomerase II is nearly undetectable at the non-permissive temperature in a conditional casein kinase II mutant. The sites modified by casein kinase II are located in the extreme C-terminal domain of topoisomerase II. This domain is absent in prokaryotic and highly divergent among eukaryotic type II topoisomerases, and may serve to regulate functions of topoisomerase II that are unique to eukaryotic cells.  相似文献   

5.
The amino acid sequences of the C-terminal domain (CTD) of the type II DNA topoisomerases are divergent and species specific as compared with the highly conserved N-terminal and central domains. A set of C-terminal deletion mutants of Leishmania donovani topoisomerase II was constructed. Removal of more than 178 amino acids out of 1236 amino acid residues from the C-terminus inactivates the enzyme, whereas removal of 118 amino acids or less has no apparent effect on the ability of the parasite enzyme to complement a temperature-sensitive mutation of the Saccharomyces cerevisiae topoisomerase II gene. Deletion analysis revealed a potent nuclear localization signal (NLS) within the amino acid residues 998–1058. Immunomicroscopy results suggest that the removal of an NLS in the CTD is likely to contribute to the physiological dysfunction of these proteins. Modeling of the LdTOP2 based on the crystal structure of the yeast type II DNA topoisomerase showed that the parasite protein assumes a structure similar to its yeast counterpart harboring all the conserved residues in a structurally similar position. However, a marked difference in electrostatic potential was found in a span of 60 amino acid residues (998–1058), which also do not have any homology with topoisomerase II sequences. Such significant differences can be exploited by the structure-based design of selective inhibitors using the structure of the Leishmania enzyme as a template.  相似文献   

6.
The Src homology 2 domain-containing protein tyrosine phosphatases SHP-1 and SHP-2 play an important role in many intracellular signaling pathways. Both SHP-1 and SHP-2 have been shown to interact with a diverse range of cytosolic and membrane-bound signaling proteins. Generally, SHP-1 and SHP-2 perform opposing roles in signaling processes; SHP-1 acts as a negative regulator of transduction in hemopoietic cells, whereas SHP-2 acts as a positive regulator. Intriguingly, SHP-1 has been proposed to play a positive regulating role in nonhemopoietic cells, although the mechanisms for this are not understood. Here we show that green fluorescent protein-tagged SHP-1 is unexpectedly localized within the nucleus of transfected HEK293 cells. In contrast, the highly related SHP-2 protein is more abundant within the cytoplasm of transfected cells. In accordance with this, endogenous SHP-1 is localized within the nucleus of several other nonhemopoietic cell types, whereas SHP-2 is distributed throughout the cytoplasm. In contrast, SHP-1 is confined to the cytoplasm of hemopoietic cells, with very little nuclear SHP-1 evident. Using chimeric SHP proteins and mutagenesis studies, the nuclear localization signal of SHP-1 was identified within the C-terminal domain of SHP-1 and found to consist of a short cluster of basic amino acids (KRK). Although the KRK motif resembles half of a bipartite nuclear localization signal, it appears to function independently and is absolutely required for nuclear import. Our findings show that SHP-1 and SHP-2 are distinctly localized within nonhemopoietic cells, with the localization of SHP-1 differing dramatically between nonhemopoietic and hemopoietic cell lineages. This implies that SHP-1 nuclear import is a tightly regulated process and indicates that SHP-1 may possess novel nuclear targets.  相似文献   

7.
Mammalian cells express two genetically distinct isoforms of DNA topoisomerase II, designated topoisomerase IIalphaand topoisomerase IIbeta. We have recently shown that mouse topoisomerase IIalpha can substitute for the yeast topoisomerase II enzyme and complement yeast top2 mutations. This functional complementation allowed functional analysis of the C-terminal domain (CTD) of mammalian topoisomerase II, where the amino acid sequences are divergent and species-specific, in contrast to the highly conserved N-terminal and central domains. Several C-terminal deletion mutants of mouse topoisomerase IIalpha were constructed and expressed in yeast top2 cells. We found that the CTD of topoisomerase IIalphais dispensable for enzymatic activity in vitro but is required for nuclear localization in vivo. Interestingly, the CTD of topoisomerase IIbetawas also able to function as a signal for nuclear targeting. We therefore examined whether the CTD alone is sufficient for nuclear localization in vivo . The C-terminal region was fused to GFP (green fluorescent protein) and expressed under the GAL1 promoter in yeast cells. As expected, GFP signal was exclusively detected in the nucleus, irrespective of the CTD derived from either topoisomerase IIalphaor IIbeta. Surprisingly, when the upstream sequence of each CTD was added nuclear localization of the GFP signal was found to be cell cycle dependent: topoisomerase IIalpha-GFP was seen in the mitotic nucleus but was absent from the interphase nucleus, while topoisomerase IIbeta-GFP was detected predominantly in the interphase nucleus and less in the mitotic nucleus. Our results suggest that the catalytically dispensable CTD of topoisomerase II is sufficient as a signal for nuclear localization and that yeast cells can distinguish between the two isoforms of mammalian topoisomerase II, localizing each protein properly.  相似文献   

8.
Ribosomal proteins must be imported into the nucleus after being synthesized in the cytoplasm. Since the rpS2 amino acid sequence does not contain a typical nuclear localization signal, we used deletion mutant analysis and rpS2-beta-galactosidase chimeric proteins to identify the nuclear targeting domains in rpS2. Nuclear rpS2 is strictly localized in the nucleoplasm and is not targeted to the nucleoli. Subcellular localization analysis of deletion mutants of rpS2-beta-galactosidase chimeras identified a central domain comprising 72 amino acids which is necessary and sufficient to target the chimeric beta-galactosidase to the nucleus. The nuclear targeting domain shares no significant similarity to already characterized nuclear localization signals in ribosomal proteins or other nuclear proteins. Although a Nup153 fragment containing the importinbeta binding site fused to VP22 blocks nuclear import of rpS2-beta-galactosidase fusion proteins, nuclear uptake of rpS2 could be mediated by several import receptors since it binds to importinalpha/beta and transportin.  相似文献   

9.
For PCR-based identification of Aspergillus species, a common primer of the DNA topoisomerase II genes of Candida, Aspergillus and Penicillium, and species-specific primers of the genomic sequences of DNA topoisomerase II of A. fumigatus, A. niger, A. flavus (A. oryzae), A. nidulans and A. terreus were tested for their specificities in PCR amplifications. The method consisted of amplification of the genomic DNA topoisomerase II gene by a common primer set, followed by a second PCR with a primer mix consisting of 5 species-specific primer pairs for each Aspergillus species. By using the common primer pair, a DNA fragment of approximately 1,200 bp was amplified from the Aspergillus and Penicillium genomic DNAs. Using each species-specific primer pair, unique sizes of PCR products were amplified, all of which corresponded to a species of Aspergillus even in the presence of DNAs of several fungal species. The sensitivity of A. fumigatus to the nested PCR was found to be 100 fg of DNA in the reaction mixture. In the nested PCR obtained by using the primer mix (PsIV), the specific DNA fragment of A. fumigatus was amplified from clinical specimens. These results suggest that this nested PCR method is rapid, simple and available as a tool for identification of pathogenic Aspergillus to a species level.  相似文献   

10.
We have studied topoisomerase II (topo II) in the cells of Bodo saltans, a free-living bodonid (Kinetoplastida). Phylogenetic analysis based on the sequence of the entire topo II gene, which is a single-copy gene, confirmed that B. saltans is a predecessor of parasitic trypanosomatids. Antibodies generated against either an overexpressed unique C-terminal region of topo II or a synthetic oligopeptide derived from the same region did not cross-react with cell lysates of related trypanosomatids, while they recognized a single specific band in the B. saltans lysate. Immunolocalization experiments using both antibodies showed that topo II is evenly dispersed throughout the kinetoplast. This is in striking difference from the localization of topo II in other flagellates, where it occurs in two antipodal centers flanking the kinetoplast disk. Moreover, the same topo II has a distinct localization in multiple loci at the periphery of the nucleus of B. saltans. With a minicircle probe derived from the conserved region we have shown that all relaxed non-catenated minicircles are confined to the globular kinetoplast DNA bundle. Therefore, in the mitochondrion of this primitive eukaryote topo II does not catenate relaxed DNA circles into a network in vivo, while a decatenating activity is present in partially purified cell lysates.  相似文献   

11.
We have studied the stimulation of topoisomerase IV (Topo IV) by the C-terminal AAA+ domain of FtsK. These two proteins combine to assure proper chromosome segregation in the cell. Stimulation of Topo IV activity was dependent on the chirality of the DNA substrate: FtsK stimulated decatenation of catenated DNA and relaxation of positively supercoiled [(+)ve sc] DNA, but inhibited relaxation of negatively supercoiled [(−)ve sc] DNA. The DNA translocation activity of FtsK was not required for stimulation, but was required for inhibition. DNA chirality did not affect any of the activities of FtsK, suggesting that FtsK possesses an inherent Topo IV stimulatory activity that is presumably mediated by protein–protein interactions, the stability of Topo IV on the DNA substrate dictated the effect observed. Inhibition occurs because FtsK can strip distributively acting topoisomerase off (−)ve scDNA, but not from either (+)ve scDNA or catenated DNA where the enzyme acts processively. Our analyses suggest that FtsK increases the efficiency of trapping of the transfer segment of DNA during the catalytic cycle of the topoisomerase.  相似文献   

12.
Multiple forms and cellular localization of Drosophila DNA topoisomerase II   总被引:7,自引:0,他引:7  
Purified type II topoisomerase from Drosophila melanogaster embryos was reported earlier to contain a major polypeptide of 166,000 daltons and several smaller peptides between 132,000 and 145,000 daltons (Shelton, E. R., Osheroff, N. and Brutlag, D. L. (1983) J. Biol. Chem. 258, 9530-9535). Using purified topoisomerase II we have raised antibodies against the 132,000-166,000-dalton cluster of polypeptides. In this paper we demonstrate that at least three of these polypeptides are also present in embryos immediately upon lysis. Using antigen-affinity purified antibody from the cluster of purified topoisomerase II antigens, we have also discovered several smaller polypeptides in the molecular size range of 30,000-40,000 daltons in embryo extracts. These observations suggest the presence of multiple forms of DNA topoisomerases in the cell. In addition, we demonstrate that purified Drosophila topoisomerase II antibody recognizes yeast topoisomerase II antigens expressed by lambda gt 11-yeast topoisomerase II recombinants (Goto, T. and Wang, J. C. (1984) Cell 36, 1073-1080) establishing a structural homology between yeast and Drosophila enzymes. Antibody preparations were also used to localize the distribution of topoisomerase II in polytene nuclei. In contrast with the distribution of topoisomerase I which is located primarily at puffs, the Drosophila topoisomerase II is distributed generally along the chromosomes paralleling the distribution of DNA itself.  相似文献   

13.
The potential role(s) of DNA topoiosmerase II (topo II) during chromatin changes that characterize different stages of spermatogenesis was investigated in the rat by an analysis of the expression and localization of topo II mRNA and protein in individual spermatogenic cells. Expression of topo II was restricted to spermatogonia, spermatocytes, and round and early-elongating spermatids. Two protein bands of 177 and 170 kDa were detected in immunoblots of spermatocytes and round spermatids, while bands of 148 and 142 kDa were prominent in preparations of elongating spermatids. Topo II levels and distribution patterns, as observed by immunofluorescent microscopy, exhibited cell type-specific variations. Differences in topo II staining patterns were also apparent when nuclear matrices of spermatogenic cells were prepared with different extraction conditions. In addition to its possible function as a structural component, topo II, associated with nuclear matrix preparations from spermatogenic cells, possessed catalytic activity. These observations indicate that both the 177 and 170 kDa and the 148 and 142 kDa forms of topo II share similar structural and functional properties. Topo IIβ mRNA was transcribed in rat spermatogenic cells at 6.2 kb. Relative levels of topo IIβ mRNA were high in spermatogonia and spermatocytes, and decreased in both round and early-elongating spermatids. Changes in topo II expression levels and localization patterns represent distinct stage-specific markers for the maturation of spermatogenic cells, and are consistent with the involvement of topo II in mediating DNA modifications and chromatin changes during spermatogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The sex-determining factor SRY is a DNA-binding protein that diverts primordial gonads from the ovarian pathway toward male differentiation to form testes. It gains access to the nucleus through two distinct nuclear localization signals (NLSs) that flank the high mobility group (HMG) DNA-binding domain, but the mechanisms through which these NLSs operate have not been studied. In this study, we reconstitute the nuclear import of SRY in vitro, demonstrating a lack of requirement for exogenous factors for nuclear accumulation and a significant reduction in nuclear transport in the presence of antibodies to importin beta but not importin alpha. Using a range of quantitative binding assays including enzyme-linked immunosorbent assay, fluorescence polarization, and native gel mobility electrophoresis, we assess the binding of importins to SRY, demonstrating a high affinity recognition (in the low nm range) by Imp beta independent of Imp alpha. In assessing the contribution of each NLS, we found that the N-terminal NLS was recognized poorly by importins, whereas the C-terminal NLS was bound by importin beta with similar affinity to SRY. We also found that RanGTP, but not RanGDP, could dissociate the SRY-importin beta complex in solution using FP. We describe a novel double-fluorescent label DNA binding assay to demonstrate mutual exclusivity between importin beta recognition and DNA binding on the part of SRY, which may represent an alternative release mechanism upon nuclear entry. This study represents the first characterization of the nuclear import pathway for a HMG domain-containing protein. Importantly, it demonstrates for the first time that recognition of SRY by Imp beta is of comparable affinity to that with which Imp alpha/beta recognizes conventional NLS-containing substrates.  相似文献   

15.
16.
The mouse Polycomb group (PcG) protein M33 forms nuclear complexes with the products of other PcG members and maintains repressed states of developmentally important genes, including homeotic genes. In this context, nuclear localization is a prerequisite for M33 to exert its function. However, we previously found that M33 in mouse liver shuttles dynamically between the nucleus and the cytoplasm, depending on the proliferative states of cells, coupled with phosphorylation and dephosphorylation of M33 protein. To understand the mechanism and significance of this phenomenon, we identified the functional nuclear localization signal (NLS) of M33 protein. Deletion mutants that lack a particular one of three putative NLS motifs failed to localize in the nucleus. Green fluorescent protein (GFP) fused to this motif specifically localized in the nucleus. We conclude that this amino-acid stretch in M33 acts as the functional NLS for this protein.  相似文献   

17.
K H Kim  T Akashi  I Mizuguchi  A Kikuchi 《Gene》1999,236(2):293-301
We have determined the complete nucleotide sequence of a 5544bp genomic DNA fragment from Aspergillus nidulans that encodes DNA topoisomerase II (topo II). It contains a single open reading frame of 4740bp that codes for 1579 amino acid residues with a molecular weight of 178kDa; when expressed in Escherichia coli and Saccharomyces cerevisiae the molecular weight was 180kDa. The gene (TOP2) is divided into three exons. Two introns, 54bp and 60bp in length, are located at nucleotide positions 187 and 3214 respectively. Comparison of the deduced amino acid sequence with other eukaryotic topo II sequences showed a higher degree of identity with other fungal enzymes than the human topo IIalpha. One of monoclonal antibodies raised against human topo II, 6H8, can cross-react with Aspergillus topo II.  相似文献   

18.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.  相似文献   

19.
The cytidine deaminases belong to the family of multisubunit enzymes that catalyze the hydrolytic deamination of their substrate to a corresponding uracil product. They play a major role in pyrimidine nucleoside and nucleotide salvage. The intracellular distribution of cytidine deaminase and related enzymes has previously been considered to be cytosolic. Here we show that human cytidine deaminase (HCDA) is present in the nucleus. A highly specific, affinity purified polyclonal antibody against HCDA was used to analyze the intracellular localization of native HCDA in a variety of mammalian cells by in situ immunochemistry. Native HCDA was found to be present in the nucleus as well as the cytoplasm in several cell types. Indirect immunofluorescence microscopy indicated a predominantly nuclear localization of FLAG-tagged HCDA overexpressed in these cells. We have identified an amino-terminal bipartite nuclear localization signal that is both necessary and sufficient to direct HCDA and a non-nuclear reporter protein to the nucleus. We also show HCDA binding to the nuclear import receptor, importin alpha. Similar putative bipartite nuclear localization sequences are found in other cytidine/deoxycytidylate deaminases. The results presented here suggest that the pyrimidine nucleotide salvage pathway may operate in the nucleus. This localization may have implications in the regulation of nucleoside and nucleotide metabolism and nucleic acid biosynthesis.  相似文献   

20.
Here we show that the VirD2 protein of A. tumefaciens functions as a nuclear localizing protein in plant cells. The nuclear localization signal of VirD2 consists of two regions containing 4-5 basic amino acids (KRPR and RKRER), located within the C-terminal 34 amino acids. These regions conform to the KR/KXR/K motif required for numerous nuclear localized nonplant eukaryotic proteins. Each region independently directs a beta-glucuronidase reporter protein to the nucleus; however, both regions are necessary for maximum efficiency. VirD2 has been shown to be tightly bound to the 5' end of the single-stranded DNA transfer intermediate, T-strand, transferred from Agrobacterium to the plant cell genome. The present results imply that T-strand transport to the plant nucleus is mediated by the tightly attached VirD2 protein via an import pathway common to higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号