首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

2.
In the presence of 1 mM EGTA, the addition of the calcium ionophore ionomycin to human platelets loaded with 30 microM fura-2 could elevate [Ca2+]i from less than 100 nM to a maximum of greater than 3 microM, presumably by discharge of Ca2+ from internal stores. Under the same conditions thrombin could maximally increase [Ca2+]i to a peak of greater than 1 microM which then declined to near resting levels within 3-4 minutes; by contrast in platelets loaded with 1 mM quin2 thrombin could raise [Ca2+]i to only about 200 nM. In the presence of 1 mM Ca2+ the peak response to thrombin in fura-2-loaded platelets was higher (1.4 microM) than that observed in the presence of EGTA (1.1 microM) and the elevation in [Ca2+] was prolonged, presumably by Ca2+ influx. These results with fura-2-loaded platelets indicate that mobilisation of internal Ca2+ can contribute a substantial proportion of the early peak [Ca2+]i evoked by thrombin directly confirming the deductions from previous work with different loadings of quin2. Under natural conditions the major role of Ca2+ influx may be to prolong the [Ca2+]i rise rather than to make it larger.  相似文献   

3.
Dose-response relationships for raised cytoplasmic free calcium concentration, [Ca2+]i, and shape change were measured simultaneously in quin2-loaded human platelets. With the calcium ionophore ionomycin the threshold [Ca2+]i for shape change was 300 nM with a maximal response at 800 nM. With 1 mM external Ca2+ the U44069 concentrations required to stimulate half-maximal shape change and an increase in [Ca2+]i were 2 and 41 nM, respectively. For PAF these values were 8.7 and 164 pg/ml, respectively. Low concentrations of U44069 and PAF evoked substantial shape change without any rise in [Ca2+]i. In the absence of external Ca2+, U44069 stimulated half-maximal shape change at 2 nM, and half-maximal elevation of [Ca2+]i at 69 nM: here, increased [Ca2+]i never reached the threshold [Ca2+]i for shape-change derived with ionomycin. These results suggest that some transduction mechanism other than elevated [Ca2+]i, as yet unidentified, can cause shape change.  相似文献   

4.
S O Sage  T J Rink 《FEBS letters》1985,188(1):135-140
The adenylate cyclase stimulator forskolin was used to study the inhibitory effects of elevated cAMP on the activation of washed human platelets loaded with the fluorescent Ca2+ indicator quin2. In the presence of 10 microM isobutylmethylxanthine forskolin inhibited rises in [Ca2+]i evoked by thrombin and platelet-activating factor (PAF) due to both Ca2+ influx and release from internal stores with similar potency. Aggregation evoked by thrombin and PAF was suppressed whilst partial shape-change persisted, even in the absence of a measurable rise in [Ca2+]i. Forskolin did not affect the rise in [Ca2+]i evoked by Ca2+ ionophore; aggregation was suppressed but shape-change persisted.  相似文献   

5.
The regulation of extracellular Ca2+ entry into fura-2-loaded human platelets was examined following stimulation with thrombin. In the presence of external Ca2+, stimulation of platelets with thrombin resulted in a rapid increase, followed by a plateau, in intracellular Ca2+ concentration ([Ca2+]i). Pretreatment with wortmannin, a specific inhibitor of myosin light chain kinase, suppressed only the plateau phase and had no effect on the initial rapid increase in [Ca2+]i. In Ca(2+)-free EGTA buffer, thrombin induced a transient and relatively small increase in [Ca2+]i caused by Ca2+ release from internal stores. When Ca2+ was added subsequently to the Ca(2+)-free medium within 10 min after thrombin activation, a marked increase in [Ca2+]i was seen, reflecting thrombin-stimulated external Ca2+ entry. With the Ca(2+)-free medium, wortmannin did not affect either the Ca2+ mobilization from the internal stores or the rapid external Ca2+ entry at early time points (within 5 s) after thrombin stimulation, whereas it significantly inhibited Ca2+ entry when Ca2+ was added later (at 3 min). Wortmannin inhibition of this late Ca2+ entry and that of 20-kDa myosin light chain phosphorylation after thrombin stimulation were dose- and preincubation time-dependent and correlated well with each other. These results suggest that two different channels are responsible for Ca2+ entry in human platelets at the early and late phases of thrombin stimulation and that the channel responsible for the late phase of Ca2+ entry may be activated by a mechanism involving myosin light chain kinase.  相似文献   

6.
Depletion of intracellular calcium stores appears to increase plasma membrane permeability for calcium by an as yet obscure mechanism. We found that the Ca2+ ionophore, A23187, and thrombin elevate cytosolic calcium ([Ca2+]i) equally and cause tyrosine phosphorylation of a 130-kDa protein and to a lesser extent 80- and 60-kDa proteins. Chelation of [Ca2+]i by 1,2-bis(2-aminophenoxyethane)-N,N,N',N'-tetraacetic acid/acetomethoxy ester decreased thrombin-induced tyrosine phosphorylation responses. These results suggested that [Ca2+]i elevation promotes tyrosine phosphorylation. Tyrosine phosphorylation persisted in the presence or absence of extracellular calcium after thrombin stimulation but subsided rapidly after A23187 addition if extracellular calcium was present. When Ca2+/ATPase activity, which is apparently required to maintain calcium stores, is inhibited by low temperature, tyrosine phosphorylation of the 130-kDa protein occurs. Rewarming platelets reverses tyrosine phosphorylation only if extracellular calcium is present. Thapsigargin, a calcium ATPase inhibitor, also induces tyrosine phosphorylation of the 130-kDa protein and prevents dephosphorylation of this protein when added prior to rewarming. These observations suggest that homeostatic levels of calcium in storage compartments favor tyrosine dephosphorylation of specific proteins. Thus the levels of [Ca2+]i and stored calcium appear to control tyrosine phosphorylation antagonistically. Tyrosine phosphorylation may play a role in regulating calcium channel function.  相似文献   

7.
We have used the non-specific inhibitor of protein kinases, staurosporine, to investigate the role of protein phosphorylation during aggregation, the mobilization of intracellular Ca2+ (Ca2+)i and intracellular pH (pHi) in thrombin-stimulated platelets. The concentration of staurosporine chosen for these studies, 1 microM, was previously reported to inhibit protein phosphorylation completely but to have no effect on the activation of phospholipase C in thrombin-stimulated human platelets [Watson, McNally, Shipman & Godfrey (1988) Biochem. J. 249, 345-350]. Aggregation induced by phorbol dibutyrate is slow (several minutes) and is inhibited completely by staurosporine. In contrast, aggregation induced by thrombin, platelet-activating factor or ionophore A23187 is rapid (occurs within 60 s), and is slowed, but not inhibited, in the presence of staurosporine. On the other hand, staurosporine causes a small potentiation of the peak [Ca2+]i signal induced by thrombin and a marked increase in the half-life of decay of this signal, but has no effect on pHi. Under conditions designed to prevent an increase in [Ca2+]i (presence of Ni2+ to prevent Ca2+ entry, and depletion of the intracellular Ca2+ stores), aggregation induced by thrombin resembles that by phorbol dibutyrate and is now inhibited completely by staurosporine. Taken together, these results provide evidence for two signalling pathways for aggregation, a relatively rapid phosphorylation-independent route mediated by Ca2+ and a slower, phosphorylation-dependent, pathway mediated by protein kinase C. Since staurosporine slows aggregation induced by thrombin, it appears that under normal conditions these pathways interact synergistically.  相似文献   

8.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

9.
Platelet free calcium concentrations ([Ca2+]i) were measured with Fura-2 to elucidate the intracellular calcium kinetics in patients with renal disease. There were no significant differences of the resting [Ca2+]i among the control subjects (C) (n = 12), patients with chronic glomerulonephritis (CGN) (n = 8), and patients with chronic renal failure (CRF) (n = 12). In all groups, platelets [Ca2+]i were significantly increased by agonists (thrombin, adenosine diphosphate) compared with their respective basal level. Thrombin-induced [Ca2+]i rise was significantly higher in CRF (840 +/- 265 nM) than in C (600 +/- 163) and CGN (562 +/- 137). Also adenosine diphosphate elicited similar responses. In the presence of calcium chelator in the incubation buffer, the elevation of [Ca2+]i after thrombin stimulation was statistically higher in CRF (469 +/- 85 nM) than in C (275 +/- 60) and CGN (301 +/- 41). These findings suggest that platelets of CRF were capable of increasing [Ca2+]i in response to agonists, through further mobilization of calcium from the intracellular pool rather than the elevation of transmembrane calcium influx.  相似文献   

10.
One of the earliest events following stimulation of human platelets with thrombin is a rise in the cytosolic pH, pHi, mediated by Na+/H+ exchange, and an increase in the cytosolic free Ca2+ concentration, [Ca2+]i. In the present study we investigated whether an increase in pHi alone, induced by the Na+/H+ ionophore monensin, is sufficient for platelet activation. Although monensin (20 microM) raised pHi from 7.10 +/- 0.05 (n = 21) to 7.72 +/- 0.17 (n = 13), neither Ca2+ influx nor mobilization were detectable upon this treatment in fura2-loaded platelets. In contrast, thrombin (0.05 U/ml) raised pHi to 7.31 +/- 0.10 (n = 10) and increased [Ca2+]i by more than 250 nM both in the presence and absence of extracellular Ca2+. Thrombin also caused the formation of phosphatidic acid and phosphorylation of the 20 kDa and 47 kDa proteins in platelets labeled with 32P. Monensin, however, induced none of these responses. It is concluded that an increase in pHi alone is not a sufficient trigger for platelet activation but enhances intracellular signal transduction in platelets stimulated by natural agonists.  相似文献   

11.
Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in cell suspensions. These results suggest that an increase in [Ca2+]i may be an early event in PAF activation of macrophages.  相似文献   

12.
The contractile force generated by hepatic stellate cells in response to endothelin-1 contributes to sinusoidal blood flow regulation and hepatic fibrosis. This study's aim was to directly test the widely held view that changes in cytosolic Ca2+ concentration ([Ca2+]i) mediate stellate cell force generation. Contractile force generation by primary cultures of rat hepatic stellate cells grown in three-dimensional collagen gels was directly and quantitatively measured using a force transducer. Stellate cell [Ca2+]i, myosin activation, and migration were quantified using standard techniques. [Ca2+]i was modulated using ionomycin, BAPTA, KCl, and removal of extracellular Ca2+. Removal of extracellular Ca2+ did not alter endothelin-1-stimulated force development or [Ca2+]i. Ionomycin, a Ca2+ ionophore, triggered an increase in [Ca2+]i that was three times greater than that stimulated by endothelin-1, but only induced 16% of the force and 38% of the myosin regulatory light chain (MLC) phosphorylation induced by endothelin-1. Physiological increases in [Ca2+]i induced by hyperkalemia had no effect on contractile force. Loading BAPTA, a Ca2+ chelator, in stellate cells completely blocked endothelin-1-induced increases in [Ca2+]i but had no effect on endothelin-1-stimulated force generation or MLC phosphorylation. In contrast, Y-27632, a selective rho-associated kinase inhibitor, inhibited endothelin-1-stimulated force generation by at least 70% and MLC phosphorylation by at least 80%. Taken together, these observations indicate that changes in [Ca2+]i are neither necessary nor sufficient for contractile force generation by rat stellate cells. Our results challenge the current model of contractile regulation in hepatic stellate cells and have important implications for our understanding of hepatic pathophysiology.  相似文献   

13.
9, 11-Epithio-11, 12-methano-thromboxane A2 (STA2), a stable analogue of thromboxane A2, caused a rapid rise in cytoplasmic free Ca2+ concentration ([Ca2+]i) in human platelets as measured with the fluorescent Ca2+ indicator quin2. Concomitantly, this compound induced phosphorylation of myosin light chain which is catalyzed by Ca2+, calmodulin-dependent protein kinase. These reactions were fast enough to trigger serotonin release. 13-Azaprostanoic acid, a receptor level antagonist of thromboxane A2 inhibited STA2-induced elevation of [Ca2+]i, phosphorylation of myosin light chain and serotonin release. These results provide evidence that STA2 interacts with a thromboxane A2 receptor which leads to elevation of [Ca2+]i.  相似文献   

14.
N Takasu  T Yamada  Y Shimizu 《FEBS letters》1987,225(1-2):43-47
Epidermal growth factor (EGF), 12-O-tetradecanoylphorbol 13-acetate (TPA) and calcium ionophore A23187 increase cytoplasmic free calcium ([Ca2+]i) and stimulate arachidonic acid release and production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in cultured porcine thyroid cells. Addition of EGF, TPA or A23187 to the cells loaded with fura-2, a fluorescent Ca2+ indicator, causes an immediate increase in [Ca2+]i, which is the earliest event after mitogen stimulation. This [Ca2+]i response occurs immediately, reaching a maximum within several seconds. EGF, TPA and A23187 stimulate arachidonic acid release and PGE2 and 6-keto PGF1 alpha production; the maximum effects are obtained after 2-4 h incubation. EGF, TPA and A23187 increase [Ca2+]i and then stimulate arachidonic acid release and PG production.  相似文献   

15.
Our digital imaging microscope equipped with a microspectrofluorometer revealed in single resting human platelets the existence of continuous Ca2+ gradient increasing towards the plasma membrane (frequency; 100%) and discontinuous ones (Ca2+ plateaus) in the endoplasmic regions (frequency: 70%). An average cytoplasmic free Ca2+ concentration ([ Ca2+]i) in a whole cytoplasm was 72 +/- 7 nM, ranging from 30 nM in the lowest to 150 nM in the highest region just beneath the plasma membrane. When stimulated with thrombin, [Ca2+]i uniformly increased to the average [Ca2+]i of 300 nM and these gradients disappeared. This [Ca2+]i transient was followed by the sustained increase in [Ca2+]i in both single cells and cell suspension.  相似文献   

16.
The effect of platelet-activating factor (PAF-acether) on cytosolic free calcium, [Ca2+]i, in adherent human vascular endothelial cells in culture was directly determined using a new fluorescent calcium indicator, fura-2. It was found that PAF-acether but not lyso PAF-acether induced a rapid and transient increase in [Ca2+]i in endothelial cells. Restimulation with PAF-acether after the first challenge did not cause further response, while the cells were able to respond to thrombin. In the absence of extracellular calcium, PAF-acether evoked a similar transient increase, suggesting that PAF-acether raises [Ca2+]i mainly by discharging calcium from intracellular pools. PAF-acether-induced rise in [Ca2+]i was completely blocked by a specific antagonist, BN 52021. These results suggest the receptor-mediated increase in [Ca2+]i as an early event in PAF-acether activation of human vascular endothelial cells.  相似文献   

17.
We have investigated the sub-second kinetics of changes in cytosolic free calcium, [Ca2+]i, in fura-2-loaded human platelets by stopped-flow fluorimetry. Thrombin, vasopressin, platelet-activating factor, and the thromboxane A2 analogue U46619 all evoked a rise in [Ca2+]i which was delayed in onset by 200-400 ms in the presence of 1 mM external Ca2+. The responses to these agonists in media containing 1 mM EGTA or 1 mM Ni2+, to prevent Ca2+ influx, were delayed by an additional 60-100 ms. These results indicate that agonist-evoked Ca2+ influx precedes the release of Ca2+ from internal stores. The delays in onset of both responses are sufficient for one or more biochemical steps to lie between ligand-receptor binding and Ca2+ flux generation. ADP responses in media containing EGTA or Ni2+ were similar to those evoked by other agonists, but the response in the presence of external Ca2+ was markedly shorter, occurring without measurable delay at optimal ligand concentration. Analysis of this response showed some delay in ADP-evoked influx at lower concentrations, but this delay was markedly less than that observed with thrombin at doses giving the same elevation in [Ca2+]i. These results suggest that ADP evokes influx using a different transduction system, more closely coupled to the Ca2+ entry system than that used by other agonists. Differences between thrombin- and ADP-evoked influx were further demonstrated by the inhibitory actions of cAMP, which reduced and substantially increased the delay in onset of thrombin-evoked influx but did not measurably delay the influx evoked by an optimal concentration of ADP.  相似文献   

18.
Initiation of smooth muscle contraction is associated with Ca2+/calmodulin activation of myosin light chain kinase which catalyzes the phosphorylation of the 20-kDa light chain of myosin. In tracheal smooth muscle cells in culture, the extent of myosin light chain phosphorylation is less than 10% at basal cytosolic free Ca2+ concentrations of 150 nM. Stimulation of these cells with serotonin, histamine, carbachol, or the Ca2+ ionophore, ionomycin, increases free cytosolic Ca2+ concentrations and the extent of myosin light chain phosphorylation. Light chain phosphorylation reaches a maximal value of 67% at Ca2+ concentrations below 1 microM. The relationship between the extent of light chain phosphorylation and cytosolic free Ca2+ concentration is apparently independent of the source of free intracellular Ca2+ or the agent used to stimulate the cells and is not altered by pre-exposure of the contractile apparatus to high concentrations of free Ca2+. Pretreatment of cells with 8-bromo-cyclic GMP or forskolin decreases free cytosolic Ca2+ concentrations and the extent of myosin light chain phosphorylation in response to histamine or ionomycin. Pretreatment with 8-bromo-cyclic GMP also decreases the maximal extent of light chain phosphorylation. These results indicate that cytosolic free Ca2+ concentration, per se, is a primary determinant for myosin light chain phosphorylation in tracheal smooth muscle cells.  相似文献   

19.
Calcium-specific ionophores are used widely to stimulate Ca2+-dependent secretion from cells on the assumption that permeabilization of the cell membranes to Ca2+ ions leads to a rise in concentration of cytosolic Ca2+ ([Ca2+]i), which in turn serves as a signal for secretion. In this way, events that precede mobilization of Ca2+ ions via receptor stimulation are bypassed. One such event is thought to be the rapid hydrolysis of membrane inositol phospholipids to form inositol phosphates and diacylglycerol. Accordingly, rat leukemic basophil (2H3) cells can be stimulated to secrete histamine either with the ionophores or by aggregation of receptors for IgE in the plasma membrane. We find, however, that ionophore A23187 stimulates secretion of histamine only at concentrations (200-1000 nM) that stimulate hydrolysis of membrane inositol phospholipids. The extent of hydrolysis of inositol phospholipids was dependent on the concentration of ionophore and the presence of external Ca2+ ions and correlated with the magnitude of the secretory response. A similar correlation between secretion and hydrolysis of inositol phospholipids was observed in response to the Ca2+-specific ionophore, ionomycin. Although this hydrolysis (possibly a consequence of elevated [Ca2+]i) was less extensive than that induced by aggregation of receptors, it may govern the secretory response to A23187. The studies revealed one paradox. The rise in [Ca2+]i depended on intracellular ATP levels, when either an ionophore or antigen was used as a stimulant irrespective of whether hydrolysis of inositol phospholipids was stimulated or not. The concept of how the ionophores act, therefore, requires critical reevaluation.  相似文献   

20.
In the present study we have investigated the effect of changes in the concentration of cytosolic free Ca2+ ([Ca2+]i) on the deacetylation-reacylation of PAF-acether (alkylacetylglycerophosphocholine, alkylacetyl-GPC) by rabbit platelets. Washed platelets were incubated with alkyl[3H]acetyl-GPC ([3H]acetyl-PAF) or [3H]alkylacetyl-GPC ([3H]alkyl-PAF) and [Ca2+]i was subsequently elevated by the addition of the ionophore A23187 or thrombin. The catabolism of PAF-acether was studied by measuring the release of [3H]acetate or the formation of [3H]alkylacyl-GPC. The ionophore inhibited the release of [3H]acetate and the formation of [3H]alkylacyl-GPC with no accumulation of lyso-[3H]PAF, indicating that the deacetylation of PAF-acether was blocked. The effect of ionophore on the deacetylation of PAF-acether was parallel with the increase of [Ca2+]i and could be reversed by the addition of EGTA. In contrast with the prolonged inhibition evoked by ionophore, thrombin, which induced a transient elevation of [Ca2+]i, merely delayed the deacetylation of PAF-acether. Since intact platelets failed to convert exogenous lyso-PAF, the effect of Ca2+ on its acylation was investigated by using platelet homogenates. These experiments showed that the acylation of lyso-PAF was inhibited by the exogenously added Ca2+, with a maximum effect at 1 mM. When the formation of endogenous lyso-PAF from the labelled pool of alkylacyl-GPC was examined, a prolonged increase in the concentration of lyso-PAF with a parallel and equally prolonged decrease in the cellular level of alkylacyl-GPC were observed after the addition of ionophore to intact platelets. The addition of EGTA reversed the effect of ionophore, thus permitting reacylation of lyso-PAF. In contrast, only a transient change in the level of lyso-PAF and alkylacyl-GPC was evoked by the addition of thrombin. Therefore we conclude that the inhibitory effect of Ca2+ on the deacetylation-reacylation of PAF-acether may have an important role in the regulation of its biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号