首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

2.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

3.
The food-web structure of the Arctic deep Canada Basin was investigated in summer 2002 using carbon and nitrogen stable isotope tracers. Overall food-web length of the range of organisms sampled occupied four trophic levels, based on 3.8 trophic level enrichment (15N range: 5.3–17.7). It was, thus, 0.5–1 trophic levels longer than food webs in both Arctic shelf and temperate deep-sea systems. The food sources, pelagic particulate organic matter (POM) (13C=–25.8, 15N=5.3) and ice POM (13C=–26.9, 15N=4.1), were not significantly different. Organisms of all habitats, ice-associated, pelagic and benthic, covered a large range of 15N values. In general, ice-associated crustaceans (15N range 4.6–12.4, mean 6.9) and pelagic species (15N range 5.9–16.5, mean 11.5) were depleted relative to benthic invertebrates (15N range 4.6–17.7, mean 13.2). The predominantly herbivorous and predatory sympagic and pelagic species constitute a shorter food chain that is based on fresh material produced in the water column. Many benthic invertebrates were deposit feeders, relying on largely refractory material. However, sufficient fresh phytodetritus appeared to arrive at the seafloor to support some benthic suspension and surface deposit feeders on a low trophic level (e.g., crinoids, cumaceans). The enriched signatures of benthic deposit feeders and predators may be a consequence of low primary production in the high Arctic and the subsequent high degree of reworking of organic material.  相似文献   

4.
We examined the effects of fertilizer application, especially the effects of fertigation and types of fertilizer (inorganic and organic) on yields and 15N and 13C values of tomato (Lycopersicon esculentum Mill. cv. Saturn). Fertigation is a method in which an appropriate diluted liquid fertilizer is applied to the plants each time they are drip-irrigated. We developed a method of organic fertigation using corn steep liquor (CSL) as the liquid fertilizer, because it is an industrial byproduct of cornstarch manufacture and can be used very effectively. We compared fruit yield, mineral content, 15N value, and 13C value of tomatoes grown under three different fertilizer treatments, basal dressing: basal dressing with granular chemical fertilizer; inorganic fertigation: fertigation with liquid chemical fertilizer; and organic fertigation: fertigaion with CSL. Mineral contents of tomatoes grown with basal dressing were generally lower than those grown under either fertigation treatment. These results indicated that yields and mineral contents were influenced more by the method of fertilizer application than by whether the fertilizers were inorganic or organic. There were, however, significant differences in the 15N values of tomato fruits grown under different types of fertilizer applications, especially between inorganic and organic fertilizers. The 15N value of the chemical fertilizer used for basal dressing was 0.81 ± 0.45{}, that of the chemical fertilizer for fertigation was 0.00 ± 0.04{}, and that of CSL was 8.50 ± 0.71{}. The 15N values of the soils reflected the 15N values of the fertilizers. Moreover, the 15N values of the fruits corresponded to the 15N values of the applied fertilizers. The 15N values were 3.18 ± 1.34{} in the fruits grown with a basal dressing of chemical fertilizer, 0.30 ± 0.61 in those grown under inorganic fertigation, and 7.09 ± 0.68 in those grown under organic fertigation. On the other hand, although the 13C values in the soil also reflected the 13C values of the applied fertilizers, there was no significant difference in the 13C values of fruits among the different treatments. In conclusion, because the 15N values of fertilizers correlated well with those of the fruits, it may be possible to use 15N values as an indicator of organic products.  相似文献   

5.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

6.
The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (13C) were used as tracers. Values of 13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average 13C value of CO2 from bacterial respiration was –18.5 ± 3.3. Considering a fractionation of CO2 of 3 by bacterial respiration, 13C value was –15.5, near C4 macrophyte 13C value (–13.1).The average value of total DOC 13C was –26.8 ± 2.4. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.  相似文献   

7.
Despite theories of large-scale movement and assimilation of carbon in estuaries, recent evidence suggests that in some estuaries much more limited exchange occurs. We measured the fine-scale movement and assimilation of carbon by resident macroinvertebrates between adjacent saltmarsh and mangrove habitats in an Australian estuary using 13C analysis of animals at different distances into adjacent patches of habitat. 13C values of crabs (Parasesarma erythrodactyla –15.7 ± 0.1, Australoplax tridentata –14.7 ± 0.1) and slugs (Onchidina australis –16.2 ± 0.3) in saltmarsh closely matched that of the salt couch grass Sporobolus virginicus (–15.5 ± 0.1). In mangroves, 13C values of crabs (P. erythrodactyla –22.0 ± 0.2, A. tridentata –19.2 ± 0.3) and slugs (–19.7 ± 0.3) were enriched relative to those of mangroves (–27.9 ± 0.2) but were more similar to those of microphytobenthos (–23.7 ± 0.3). The 13C values of animals across the saltmarsh-mangrove interface fitted a sigmoidal curve, with a transition zone of rapidly changing values at the saltmarsh-mangrove boundary. The width of this transition indicated that the movement and assimilation of carbon is limited to between 5 and 7 m. The 13C values of crabs and slugs, especially those in saltmarsh habitat, clearly indicate that the movement and assimilation of carbon between adjacent saltmarsh and mangrove habitat is restricted to just a few metres, although some contribution from unmeasured sources elsewhere in the estuary is possible. Such evidence demonstrating the extent of carbon movement and assimilation by animals in estuarine habitats is useful in determining the spatial arrangement of habitats needed in marine protected areas to capture food web processes.  相似文献   

8.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw –1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw –1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data.  相似文献   

9.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

10.
Ratios of 13C/12C and 15N/14N were measured in dissolved inorganic carbon (DIC), marginal vegetation, benthic macrodetritus (diameter > 1 mm) and selected invertebrate consumers in the Gamtoos estuary, South Africa to: (1) trace the provenance of benthic detrital deposits, and (2) determine the extent to which three abundant species of macroinvertebrates utilise this resource. DIC was strongly depleted in 13C with average 13C values (–9.5±0.5) being typical of limnetic waters. Benthic detrital particles (13C–24.1±0.3) originated mainly from marginal vegetation (13C–25.7±0.3), but their slightly elevated carbon ratio suggests additional input from 13C-rich sources-possibly C4 plants cultivated on the floodplain. Populations of the fossorial ghost shrimp Callianassa kraussi, the bentho-pelagic amphipod Grandidierella lignorum and the epifaunal crab Hymenosoma robiculare together account for 96% of total benthic biomass in the upper regions of this estuary. Marked differences in trophic niches were evident among these three consumer species. Ghost shrimp (13C –32.5±0.3) foraged by filter-feeding on fine suspended particulate organic matter (13C–31.2±0.5). Amphipods (13C–28.0±0.6) utilised some benthic detritus but fed mainly on suspended material. Only the relatively rare crabs (13C–23.8±1.5) appeared to utilise benthic detrital particles to any significant extent. In the benthic consumer community of the upper Gamtoos estuary, suspension feeders make up 98% of biomass and thus clearly dominate over deposit feeders. This can be traced to the low contribution of higher plants (c. 13%) to overall carbon production, and detritus originating from macrophytes is consequently relatively unimportant in supporting invertebrate secondary production in this particular system.  相似文献   

11.
The link between climate-driven river runoff and sole fishery yields observed in the Gulf of Lions (NW Mediterranean) was analysed using carbon- and nitrogen stable isotopes along the flatfish food webs. Off the Rhone River, the main terrestrial (river POM) and marine (seawater POM) sources of carbon differed in 13C (–26.11 and –22.36, respectively). Surface sediment and suspended POM in plume water exhibited low 13C (–24.38 and –24.70, respectively) that differed more from the seawater POM than from river POM, demonstrating the dominance of terrestrial material in those carbon pools. Benthic invertebrates showed a wide range in 15N (mean 4.30 to 9.77) and 13C (mean –23.81 to –18.47), suggesting different trophic levels, diets and organic sources. Among the macroinvertebrates, the surface (mean 13C –23.71) and subsurface (mean 13C –23.81) deposit-feeding polychaetes were particularly 13C depleted, indicating that their carbon was mainly derived from terrestrial material. In flatfish, 15N (mean 9.42 to 10.93) and 13C (mean –19.95 to –17.69) varied among species, indicating differences in food source and terrestrial POM use. A significant negative correlation was observed between the percentage by weight of polychaetes in the diet and the 13C of flatfish white muscle. Solea solea (the main polychaete feeder) had the lowest mean 13C, Arnoglossus laterna and Buglossidium luteum (crustacean, mollusc and polychaete feeders) had intermediate values, and Solea impar (mollusc feeder) and Citharus linguatula (crustacean and fish feeder) exhibited the highest 13C. Two different benthic food webs were thus identified off the Rhone River, one based on marine planktonic carbon and the other on the terrestrial POM carried by the river. Deposit-feeding polychaetes were responsible for the main transfer of terrestrial POM to upper trophic levels, linking sole population dynamics to river runoff fluctuations.  相似文献   

12.
Time-series 18O and 13C records from cohabiting massive coralPorites australiensis and giant clamTridacna gigas from the Great Barrier Reed of Australia, and from calcareous green algae in a core through modernHalimeda bioherm accreting in the eastern Java Sea, provide insights into the complex links between environmental factors and stable isotopes imprinted in these reef skeletal materials. The aragonitic coral and giant clam offer 20 years and 15 years of growth history, respectively. The giant clam yields mean 18O and 13C values of-0.5±0.5 and 2.2±0.2 (n=67), which agree well with the predicted equilibrium values. The coral yields mean 18O and 13C values of-5.6±0.5 and-1.8±0.7 (n=84), offering a striking example of kinetic and metabolic fractionation effects. Although both the coral and giant clam harbor symbionts and were exposed to a uniform ambient environment during their growth histories, their distinct isotopic compositions demonstrate dissimilar calcification pathways. The 18O records contain periodicities corresponding to the alternating annual density bands revealed by X-radiography and optical transmitted light. Attenuation of the 18O seasonal amplitudes occurring in the giant clam record 8 years after skeletal growth commenced is attributed to a changeover from fast to slow growth rates. Extreme seasonal 18O amplitudes of up to 2.2 discerned in both the coral and giant clam records exceed the equivalent seasonal temperature contrast in the reef environment, and are caused by the combined effect of rainfall and evaporation during the monsoon and dry seasons, respectively. Thus in addition of being useful temperature recorders, reef skeletal material of sufficient longevity, such asPorites andTridacna, may also indicate rainfall variations. Changing growth rates, determined from the annual growth bands, may exert a primary control on the coral 13C record which shows a remarkable negative shift of 1.7 over its growth history, by comparison with only 0.15 negative shift in the contemporaneous giant clam record. Use of coral 13C records as proxies of fossil fuel CO2 uptake by the ocean must be regarded with caution. The 18O and 13C records fromHalimeda are remarkably uniform over 1000 years of bioherm accretion history (18O=-1.7±0.2; 13C=3.9±0.1,n=28), in spite of variable Mg-calcite cements present in the utricles. Most of the cement infilling is probably syndepositional, and both theHalimeda aragonite and the Mg-calcite cements containign 12.3 mole % MgCO3 are deposited in isotopic equilibrium. Therefore, in favorable circumstances these algal skeletal remains may act as the shallow water analogs of benthic foraminifera in deep sea sediments in recording ambient sea water isotopic composition and temperature.  相似文献   

13.
This paper presents a large data set on carbon isotope composition (13C) of modern soils which were collected under the main vegetation communities along an altitude of 1250–5500m above sea level in the Qinghai-Tibetan Plateau. The 13C values of 198 samples range from –28.6 to –15.1 versus PDB and exhibit a clean relation to different vegetation communities from forest (–25.9±1.2) to shrub (–24.7±1.4), steppe (–23.1±1.3), alpine meadow (–23.6±0.7), alpine desert steppe (–21.3±1.6), and alpine desert (–18.9±2.5). We attributed the observed variability in 13C values to that the mean annual precipitation (MAP) and the mean annual temperature (MAT) are the main factors controlling the distribution of vegetation types in the Tibetan Plateau, which causes the change in carbon isotope composition of modern soils at any given altitude. The result of both linear and nonlinear regression analyses also confirms that MAP and MAT are the major factors affecting the 13C values of surface soils. In the absence of favorable moisture and temperature conditions, low pCO2 alone is not sufficient to cause the distinct changes in carbon isotope composition of modern soils in the Tibetan Plateau. This study provides some fundamental information on the carbon isotope composition of terrestrial carbon pools and bears some practical significance for the use of carbon isotope data to document vegetation changes and environmental conditions of the high plateau in the past.  相似文献   

14.
Summary The mean stable-carbon isotope ratios (13C) for polar bear (Ursus maritimus) tissues (bone collagen –15.7, muscle –17.7, fat –24.7) were close to those of the same tissues from ringed seals (Phoca hispida) (–16.2, –18.1, and –26.1, respectively), which feed exclusively from the marine food chain. The 13C values for 4 species of fruits to which polar bears have access when on land in summer ranged from –27.8 to –26.2, typical of terrestrial plants in the Arctic. An animal's 13C signature reflects closely the 13C signature of it's food. Accordingly, the amount of food that polar bears consume from terrestrial food webs appears negligible, even though some bears spend 1/3 or more of each year on land during the seasons of greatest primary productivity.  相似文献   

15.
Culture experiments were carried out with Acropora sp. (a branching scleractinian coral) in seawater at two pCO2 conditions (438 and 725 µatm) and two temperatures (25 and 28 °C) in order to establish the pH and temperature dependence of the boron isotopic composition of the skeleton. A clear pCO2 effect, but no temperature effect, on the coral boron isotope composition is seen. For corals cultured at normal pCO2 (438 µatm), the 11B of the skeleton was 24.0±0.2 at 25 °C, and 23.9±0.3 at 28 °C. The values of 11B measured for corals cultured at higher pCO2 (725 µatm) were lower: 22.5±0.1, and 22.8±0.1 at 25 and 28 °C, respectively. The 11B of corals cultivated at both high and normal pCO2 conditions are consistent with a dominant pH control, and are very close to that calculated from theoretical considerations. Thus, the corals do not seem to significantly alter ambient seawater for calcification with respect to pH. Co-variation between boron and carbon isotope values is explored.Communicated by: Guest Editor A. Grottoli  相似文献   

16.
Summary The ratio of deuterium to hydrogen (expressed as D) in hydrogen released as water during the combustion of dried plant material was examined. The D value (metabolic hydrogen) determined on plant materials grown under controlled conditions is correlated with pathways of photosynthetic carbon metabolism. C3 plants show mean D values of-132 for shoots and -117 for roots; C4 plants show mean D values of -91 for shoots and-77 for roots and CAM plants a D value of-75 for roots and shoots. The difference between the D value of shoot material from C3 and C4 plants was confirmed in species growing under a range of glasshouse conditions. This difference in D value between C3 and C4 species does not appear to be due to differences in the D value (tissue water) in the plants as a result of physical fractionation of hydrogen isotopes during transpiration. In C3 and C4 plants the hydrogen isotope discrimination is in the same direction as the carbon isotope discrimination and factors contributing to the difference in D values are discussed. In CAM plants grown in the laboratory or collected from the field D values range from-75 to +50 and are correlated with 13C values. When deprived of water, the D value (metabolic hydrogen) in both soluble and insoluble material in leaves of Kalanchoe daigremontiana Hamet et Perr., becomes less negative. These changes may reflect the deuterium enrichment of tissue water during transpiration, or in field conditions, may reflect the different D value of available water in areas of increasing aridity. Whatever the origin of the variable D value in CAM plants, this parameter may be a useful index of the water relations of these plants under natural conditions.  相似文献   

17.
Cernusak LA  Pate JS  Farquhar GD 《Oecologia》2004,139(2):199-213
We measured leaf dry matter 18O and 13C in parasitic plants and their hosts growing in southwestern Australia. Parasite/host pairs included two mistletoe species, three species of holoparasites, and five species of root hemiparasites. Among these parasite functional types, significant variation was observed in parasite/host isotopic differences for both 18O (P<0.0001, n=65) and 13C (P<0.0001, n=64). Mistletoes were depleted in both 18O and 13C compared to their hosts; parasite/host differences were –4.0 for 18O (P<0.0001) and –1.9 for 13C (P<0.0001). The lower 18O in mistletoe leaf dry matter compared to their hosts is consistent with the frequently observed high transpiration rates of these parasites. Root hemiparasites were also depleted in 18O and 13C compared to their hosts, but not to the same extent as mistletoes; parasite/host differences were –1.0 for 18O (P=0.04) and –1.2 for 13C (P=0.0006). In contrast to mistletoes and root hemiparasites, holoparasites were enriched in both 18O and 13C compared to their hosts; parasite/host differences were +3.0 for 18O (P<0.0001) and +1.5 for 13C (P=0.02). The enrichment in 18O for holoparasite dry matter did not result from more enriched tissue water; holoparasite tissue water 18O was less than host leaf water 18O by a difference of –3.8 when sampled at midday (P=0.0003). Enrichment of holoparasites in 13C compared to their hosts is consistent with a generally observed pattern of enrichment in heterotrophic plant tissues. Results provide insights into the ecology of parasitic plants in southwestern Australia; additionally, they provide a context for the formulation of specific hypotheses aimed at elucidating mechanisms underlying isotopic variations among plants.  相似文献   

18.
The stable isotopes of sulphur are fractionated in equilibrium and unidirectional processes in the earth's crust and biosphere. By far the most important of these processes occur in the biological sulphur cycle characterized by the activity of sulphur oxidizing and reducing microbiota. In particular, the dissimilatory reduction of sulphate to hydrogen sulphide by anaerobic bacteria leads to isotope effects of from 0 to 60, the magnitude of the effect depending largely on metabolic rates. Actual isotope ratio (3 4S) patterns in sediments depends, therefore, on environmental conditions and the nature of sulphate reservoirs during reduction. Sulphur isotope ratios can and have been used to trace environmental conditions, sources, and modes of formation of certain Phanerozoic deposits.These studies which have been extended to late and early Precambrian sediments provide a potential source of information about very early sediment deposition environments and early life. Recent carbon and sulphur isotope data for the low grade metamorphosed banded iron-formations of the Michipicoten area in Ontario (2.7 b.y. old) provide strong evidence for the existence of autotrophic organisms and reducing bacteria in late Archean times.Sulphur isotope ratios (3 4S) have now been obtained for samples from the Isua area of West Greenland. The 3 4S of the Isua sediments (3.7 b.y. old), including the various facies of the banded iron-formations, have a very narrow spread with their mean close to zero C.D.T. (0.45 ± 0.5). This comes extremely close to the respective means yielded by the Isua tuffaceous amphibolites (+0.3±0.9) and by the somewhat younger, 3.1 to 3.7×109 yr, basaltic Ameralik dykes of the region (+0.6±1.1).These results indicate a complete absence of isotopic evidence for sulphate reducers in the Isua sediments (early Archean) in contrast to the banded iron-formations of the late Archean, where 3 4S varies from –2-to +20Proceedings of the Fourth College Park Colloquium on Chemical Evolution:Limits of Life, University of Maryland, College Park, 18–20 October 1978.Contribution No. 90 of the McMaster Isotopic, Nuclear and Geochemical Studies Group.  相似文献   

19.
Summary The 13C values of submerged aquatic plants from contrasting but relatively defined habitats, and the 13C values of emergent, floating and submerged leaves of dimorphic aquatic plants, were measured. In many instances the 13C values of dissolved inorganic carbon in the water were also measured. Plant 13C values in the vicinity of-40 to-50 were found in rapidly flowing spring waters with carbonate 13C values of-16 to-21, consistent with the notion that species such as Fontinalis antipyretica almost exclusively assimilate free CO2 via RuP2 carboxylase. Plant 13C values in the vicinity of-10 to-15 in sluggish water with carbonate 13C values of about-5 were observed, consistent with the notion that boundary layer diffusion and/or HCO3 - uptake may determine the 13C value of submerged aquatic plants in these circumstances. Comparisons of 13C values of the same or related species growing in waters of similar carbonate 13C value but different flow rates confirmed this view; more negative 13C values were frequently associated with plants in fast moving water. In Britain, but not in Finland, the 13C values of submerged leaves of dimorphic plants were almost invariably more negative than in aerial leaves. The 13C value of carbonate from chalk streams and in acid springs indicate substantial inputs of respiratory CO2, as opposed to atmospheric carbon. The contributions of these variations in 13C of the carbon source, and of isotope fractionation in diffusion, to the 13C value of submerged parts of dimorphic plants is discussed.  相似文献   

20.
The 15N composition of the dominant form of dissolved inorganic nitrogen (DIN) was determined in upland groundwater, riparian groundwater, and stream water of the Barro Branco catchment, Amazônas, Brazil. The 15N composition of organic nitrogen in riparian and upland leaf litter was also determined. The data for these waters could be divided into three groups: upland groundwater DIN predominately composed of NO3 with 15N values averaging 6.25 ± 0.9 riparian groundwater DIN primarily composed of NH4 + with 15N values averaging 9.17 ± 1.0 and stream water DIN predominately composed of NO3 with 15N values averaging 4.52 ± 0.8 Nitrate samples taken from the stream source and from the stream adjacent to the groundwater transects showed a downstream increase in 15N from 1.0to 4.5 Leaf litter samples averaged 3.5 ± 1.2The observed patterns in isotopic composition, together with previously observed inorganic nitrogen species and concentration shifts between upland, riparian and stream waters, suggest that groundwater DIN is not the primary source of DIN to the stream. Instead, the isotopic data suggest that remineralization of organic nitrogen within the stream itself may be a major source of stream DIN, and that the majority of DIN entering the stream via groundwater flowpaths is removed at the riparian-stream interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号