首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
The 7S seed storage protein (β-conglycinin) of soybean (Glycine max [L]. Merr.) has three major subunits; α, α′, and β. Accumulation of the β-subunit, but not the α- and α′-subunits, has been shown to be repressed by exogenously applied methionine to the immature cotyledon culture system (LP Holowach, JF Thompson, JT Madison [1984] Plant Physiol 74: 576-583) and to be enhanced under sulfate deficiency in soybean plants (KR Gayler, GE Sykes [1985] Plant Physiol 78: 582-585). Transgenic petunia (Petunia hybrida) harboring either the α′- or β-subunit gene were constructed to test whether the patterns of differential expression were retained in petunia. Petunia regulates these genes in a similar way as soybean in response to sulfur nutritional stimuli, i.e. (a) expression of the β-subunit gene is repressed by exogenous methionine in in vitro cultured seeds, whereas the α′-subunit gene expression is not affected; and (b) accumulation of the β-subunit is enhanced by sulfur deficiency. The pattern of accumulation of major seed storage protein of petunia was not affected by these treatments. These results indicate that this mechanism of gene regulation in response to sulfur nutrition is conserved in petunia even though it is not used to regulate its own major seed storage proteins.  相似文献   

3.
Supplemental methionine in a complete culture medium increased the methionine content of the protein fraction of cultured soybean (Glycine max L. Merrill) cotyledons (Thompson, Madison, Muenster 1981 Phytochemistry 20: 941-945). To explain the observed increase in protein methionine, we have measured the amounts and subunit compositions of 7S and 11S storage proteins and determined the amino acid compositions of the three major protein fractions (2-5S, 7S, 11S) of seeds developed on plants and of cultured cotyledons grown in the presence or absence of supplemental l-methionine. Development of cultured cotyledons was representative of development of seeds on plants. The ratios of 11S to 7S proteins, the subunit contents, and amino acid compositions of their storage protein fractions were similar, but not identical. Supplemental methionine increased the mole percent methionine in each of the three protein fractions of cultured cotyledons and changed the amounts of several other amino acids. Supplemental methionine inhibited expression of the 7S β-subunit gene. Concomitant with the absence of the β-subunit, which contains no methionine, was an increase in the ratio of 11S to 7S proteins, and an increase in the methionine content of the subunits composing these fractions. Inhibition of β-subunit gene expression by methionine in cultured cotyledons provides a reproducible, easily controlled system for the study of eucaryotic gene expression.  相似文献   

4.
The degradation of the major seed storage globulins of the soybean (Glycine max [L.] Merrill) was examined during the first 12 days of germination and seedling growth. The appearance of glycinin and β-conglycinin degradation products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cotyledon extracts followed by electroblotting to nitrocellulose and immunostaining using glycinin and β-conglycinin specific antibodies. The three subunits of β-conglycinin were preferentially metabolized. Of the three subunits of β-conglycinin, the larger α and α′ subunits are rapidly degraded, generating new β-conglycinin cross-reactive polypeptides of 51,200 molecular weight soon after imbibition of the seed. After 6 days of growth the β-subunit is also hydrolyzed. At least six polypeptides, ranging from 33,100 to 24,000 molecular weight, appear as apparent degradation products of β-conglycinin. The metabolism of the glycinin acidic chains begins early in growth. The glycinin acidic chains present at day 3 have already been altered from the native form in the ungerminated seed, as evidenced by their higher mobility in an alkaline-urea polyacrylamide gel electrophoresis system. However, no change in the molecular weight of these chains is detectable by sodium dodecyl sulfate-polyarylamide gel electrophoresis. Examination of the glycinin polypeptide amino-termini by dansylation suggests that this initial modification of the acidic chains involves limited proteolysis at the carboxyl-termini, deamidation, or both. After 3 days of growth the acidic chains are rapidly hydrolyzed to a smaller (21,900 molecular weight) form. The basic polypeptides of glycinin appear to be unaltered during the first 8 days of growth, but are rapidly degraded thereafter to unidentified products. All of the original glycinin basic chains have been destroyed by day 10 of growth.  相似文献   

5.
6.
Analysis of the expression of genes encoding the β-conglycinin seed storage proteins in soybean has been used to extend our understanding of developmental gene expression in plants. The α, α′, and β subunits of β-conglycinin are encoded by a multigene family which is organ-specific in its expression. In this study we report the differentially programmed accumulation of the α, α′, and β subunits of β-conglycinin. Multiple isomeric forms of each subunit are present in the dry seed, but the timing of their accumulation is unique for each subunit. The previously reported variation in amount of α′ and α subunits in axis and cotyledons is also reflected in the amount of subunit specific mRNA which is present in each tissue. The β subunit, previously undetected in soybean axes, is found to be synthesized but rapidly degraded. These differences in β-conglycinin protein accumulation may be reflected by the morphological differences observed in protein bodies between these two tissues.  相似文献   

7.
Protease K1 activity initiates the degradation of the Kunitz soybean trypsin inhibitor (KSTI) during germination and early seedling growth. This enzyme was purified nearly 1300-fold from the cotyledons of 4-day-old soybean (Glycine max [L.] Merrill) seedlings. Protease K1 is a cysteine protease with a molecular weight of approximately 29,000. It cleaves the native form of KSTI, Tia, to Tiam, the same modified form observed in vivo. In addition to attacking KSTI, protease K1 is also active toward the major Bowman-Birk soybean trypsin inhibitor, as well as the α, α′, and β subunits of soybean β-conglycinin. The properties and temporal variation of protease K1 during germination indicate that it is responsible for initiating the degradation of both KSTI and Bowman-Birk soybean trypsin inhibitor in the soybean cotyledon.  相似文献   

8.
Ribosomal protein S1, consisting of six contiguous OB-folds, is the largest ribosomal protein and is essential for translation initiation in Escherichia coli. S1 is also one of the three essential host-derived subunits of Qβ replicase, together with EF-Tu and EF-Ts, for Qβ RNA replication in E. coli. We analyzed the crystal structure of Qβ replicase, consisting of the virus-encoded RNA-dependent RNA polymerase (β-subunit), EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication. Structural and biochemical studies revealed that the two N-terminal OB-folds of S1 anchor S1 onto the β-subunit, and the third OB-fold is mobile and protrudes beyond the surface of the β-subunit. The third OB-fold mainly interacts with a specific RNA fragment derived from the internal region of Qβ RNA, and its RNA-binding ability is required for replication initiation of Qβ RNA. Thus, the third mobile OB-fold of S1, which is spatially anchored near the surface of the β-subunit, primarily recruits the Qβ RNA toward the β-subunit, leading to the specific and efficient replication initiation of Qβ RNA, and S1 functions as a replication initiation factor, beyond its established function in protein synthesis.  相似文献   

9.
The temporal sequence of development of the major proteins of seeds of soybean (Merr.) has been studied during development of cotyledons from flowering to maturity. A well-defined difference occurred in the times of appearance and the periods of maximum accumulation of α, α′-, and β-subunits of betaconglycinin. Whereas α- and α′-subunits appeared 15 to 17 days after flowering, accumulation of β-subunit did not commence until 22 days after flowering. Such alterations in subunit composition infer that changes also occurred in the amino acid composition of betaconglycinin during maturation, particularly in the content of methionine which is low in the β-subunit.  相似文献   

10.
Protease C1, the protease responsible for the initial degradation of the α′ and α subunits of the soybean β-conglycinin storage protein (Glycine max [L.] Merrill), has been purified. The enzyme was found by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a molecular weight of 70,000 and a pH optimum of 3.5 to 4.5. Susceptibility to protease inhibitors indicates that protease C1 is a serine protease. Study of the proteolytic intermediates generated suggests that the cleavage of the α′ and α subunits of β-conglycinin by protease C1 results in intermediates that are 1 or 2 kilodaltons smaller than the native α′ and α subunits. Following that, a succession of intermediates exhibiting molecular masses of 70.0 and 58.0 kilodaltons, then 63.0, 61.0, 55.0, and 53.5 kilodaltons, are observed. A 50.0- and a 48.0- kilodalton intermediate are the final products of protease C1 action. Comparison of these intermediates with the prominent anti-β-conglycinin cross-reacting bands that increase during the first few days of germination and early growth show that protease C1 plays an important physiological role, but not an exclusive one, in the living plant.  相似文献   

11.
12.
Upon infection of Escherichia coli by bacteriophage Qβ, the virus-encoded β-subunit recruits host translation elongation factors EF-Tu and EF-Ts and ribosomal protein S1 to form the Qβ replicase holoenzyme complex, which is responsible for amplifying the Qβ (+)-RNA genome. Here, we use X-ray crystallography, NMR spectroscopy, as well as sequence conservation, surface electrostatic potential and mutational analyses to decipher the roles of the β-subunit and the first two oligonucleotide-oligosaccharide-binding domains of S1 (OB1–2) in the recognition of Qβ (+)-RNA by the Qβ replicase complex. We show how three basic residues of the β subunit form a patch located adjacent to the OB2 domain, and use NMR spectroscopy to demonstrate for the first time that OB2 is able to interact with RNA. Neutralization of the basic residues by mutagenesis results in a loss of both the phage infectivity in vivo and the ability of Qβ replicase to amplify the genomic RNA in vitro. In contrast, replication of smaller replicable RNAs is not affected. Taken together, our data suggest that the β-subunit and protein S1 cooperatively bind the (+)-stranded Qβ genome during replication initiation and provide a foundation for understanding template discrimination during replication initiation.  相似文献   

13.
14.
In vitro translation of RNA extracted from Vigna mungo cotyledons showed that α-amylase is synthesized as a polypeptide with a molecular mass of 45,000, while cotyledons contain a form of α-amylase with a molecular mass of 43,000. To find out whether the 45,000 molecular mass polypeptide is a precursor to the 43,000 found in vivo, the cell free translation systems were supplemented with canine microsomal membrane; when mRNA was translated in the wheat germ system supplemented with canine microsomes, the 45,000 molecular mass form was not processed to a smaller form but the precursor form was partly processed in the membrane-supplemented reticulocyte lysate system. When V. mungo RNA was translated in Xenopus oocyte system, only the smaller form (molecular mass 43,000) was detected. Involvement of contranslational glycosylation in the maturating process of the α-amylase was ruled out because there was no effect of tunicamycin, and the polypeptide was resistant to endo-β-H or endo-β-D digestion. We interpret these results to mean that the 45,000 molecular mass form is a precursor with a signal peptide or transit sequence, and that the 43,000 molecular mass is the mature form of the protein.  相似文献   

15.
β-conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR), feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na+,K+-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR) gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.  相似文献   

16.
The translation initiation factor aIF2 of the crenarchaeon Sulfolobus solfataricus (Sso) recruits initiator tRNA to the ribosome and stabilizes mRNAs by binding via the γ-subunit to their 5′-triphosphate end. It has been hypothesized that the latter occurs predominantly during unfavorable growth conditions, and that aIF2 or aIF2-γ is released on relief of nutrient stress to enable in particular anew translation of leaderless mRNAs. As leaderless mRNAs are prevalent in Sso and aIF2-γ bound to the 5′-end of a leaderless RNA inhibited ribosome binding in vitro, we aimed at elucidating the mechanism underlying aIF2/aIF2-γ recycling from mRNAs. We have identified a protein termed Trf (translation recovery factor) that co-purified with trimeric aIF2 during outgrowth of cells from prolonged stationary phase. Subsequent in vitro studies revealed that Trf triggers the release of trimeric aIF2 from RNA, and that Trf directly interacts with the aIF2-γ subunit. The importance of Trf is further underscored by an impaired protein synthesis during outgrowth from stationary phase in a Sso trf deletion mutant.  相似文献   

17.
Exogenous methionine depresses level of mRNA for a soybean storage protein   总被引:1,自引:0,他引:1  
In vitro translation experiments indicate that absence of the β-subunit of 7S storage protein in soybean (Glycine max L. Merr. cv. Provar) cotyledons cultured on methionine-supplemented medium is due to lack of functional mRNA for that polypeptide. Relative amounts of functional mRNA for the 7S α′- and α-subunits were unaffected by methionine in the cotyledon culture medium. Measurements of β-subunit accumulation in cotyledons transferred from basal medium to methionine-supplemented medium show that methionine inhibits continued accumulation of the β-subunit after synthesis of the β-subunit has begun, and that methionine does not promote degradation of existing β-subunit.  相似文献   

18.
19.
The composition of seed storage proteins is regulated by sulfur and nitrogen supplies. Under conditions of a low sulfur-to-nitrogen ratio, accumulation of the β-subunit of β-conglycinin, a sulfur-poor seed storage protein of soybean (Glycine max [L.] Merr.), is elevated, whereas that of glycinin, a sulfur-rich storage protein, is reduced. Using transgenic Arabidopsis thaliana [L.] Heynh., it was found that the promoter from the gene encoding the β-subunit of β-conglycinin up-regulates gene expression under sulfur deficiency and down-regulates gene expression under nitrogen deficiency. To obtain an insight into the metabolic control of this regulation, the concentrations of metabolites related to the sulfur assimilation pathway were determined. Among the metabolites, O-acetyl-l-serine (OAS), one of the precursors of cysteine biosynthesis, accumulated to higher levels under low-sulfur and high-nitrogen conditions in siliques of transgenic A. thaliana. The pattern of OAS accumulation in response to various levels of sulfur and nitrogen was similar to that of gene expression driven by the β-subunit promoter. Elevated levels of OAS accumulation were also observed in soybean cotyledons cultured under sulfur deficiency. Moreover, OAS applied to in-vitro cultures of immature soybean cotyledons under normal sulfate conditions resulted in a high accumulation of the β-subunit mRNA and protein, whereas the accumulation of glycinin was reduced. These changes were very similar to the responses observed under conditions of sulfur deficiency. Our results suggest that the level of free OAS mediates sulfur- and nitrogen-regulation of soybean seed storage-protein composition. Received: 6 February 1999 / Accepted: 16 March 1999  相似文献   

20.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号