首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Directed cell migration in tissues mediates various physiological processes and is guided by complex cellular factors such as chemoattractant gradients and electric fields. Direct current (DC) electric fields can be generated in physiological settings and the electric field guided migration of various cell types (i.e., electrotaxis) has been demonstrated both in vitro and in vivo. Although several mechanisms have been proposed for electrotaxis, there are so far very few quantitative models. Furthermore, because chemoattractant gradients and electric fields co-exist in tissues, it is important to understand how chemotaxis and electrotaxis interact for mediating cell migration and trafficking. In this study, we developed a mathematical model to investigate the role of electromigration of cell surface chemoattractant receptors in mediating electrochemical sensing and migration of cells. Our results show that electromigration of chemoattractant receptors enables cell electrotactic sensing and migration in the presence of a uniform chemoattractant field. Furthermore, in the physiologically-relevant range of receptor electromigration rates, application of electric fields overcomes chemical guiding signals for directional sensing and migration of cells in co-existing competing electric fields and chemoattractant gradients.  相似文献   

4.
Mxi1, a member of the Myc–Max–Mad network, is an antagonist of the c-Myc oncogene and is associated with excessive cell proliferation. Abnormal cell proliferation and tumorigenesis are observed in organs of Mxi1−/− mice. However, the Mxi1-reltaed mechanism of proliferation is unclear. The present study utilized microarray analysis using Mxi1 mouse embryonic fibroblasts (MEFs) to identify genes associated with cell proliferation. Among these genes, insulin-like growth factor binding protein-3 (IGFBP-3) was selected as a candidate gene for real-time PCR to ascertain whether IGFBP-3 expression is regulated by Mxi1. Expression of IGFBP-3 was decreased in Mxi1−/− MEFs and Mxi1−/− mice, and the gene was regulated by Mxi1 in Mxi1 MEFs. Furthermore, proliferation pathways related to IGFBP-3 were regulated in Mxi1−/− mice compared to Mxi1+/+ mice. To determine the effect of Mxi1 inactivation on the induction of cell proliferation, a proliferation assay is performed in both Mxi1 MEFs and Mxi1 mice. Cell viability was regulated by Mxi1 in Mxi1 MEFs and number of PCNA-positive cells was increased in Mxi1−/− mice compared to Mxi1+/+ mice. Moreover, the IGFBP-3 level was decreased in proliferation defect regions in Mxi1−/− mice. The results support the suggestion that inactivation of Mxi1 has a positive effect on cell proliferation by down-regulating IGFBP-3.  相似文献   

5.
We previously reported that insulin-like growth factor II (IGF-11) stimulated clonal growth of an erythroleukemia cell line, K562, in semi-solid agar, an effect not mimicked by insulin-like growth factor I (IGF-1), as IGF-I receptors are generally not expressed in this cell line. Affinity crosslinking of intact K562 cells with 125I-IGF-II revealed that the labeled hormone predominantly bound to a protein with a molecular weight of approximately 75 K. We report here the partial purification of the 75 K IGF-II binding protein from K562 cells. Triton X-100-solubilized K562 cells were subjected to Sephacryl-400, followed by Sephacryl-200 chromatography. Fractions of interest were collected and applied to a Sepharose-IGF-II column or an immunoaffinity column. The immuno-affinity column was prepared using an antiserum against placental membrane-derived material eluted from the Sephacryl-400 column in the elution volume, corresponding to the IGF-II binding protein from K562 cells. An affi-gel 10 affinity column, prepared with a protein A purified IgG fraction of this antiserum (antibody-29), retarded proteins showing binding specificity for IGF-II, with apparent molecular weights of 76 K, 87 K, and 70 K under reducing conditions. These protein bands were similar to the proteins retarded in the IGF-II affinity column, when evaluated by affinity crosslinking and SDS-PAGE. Fractionation of the purified material from the antibody-29 affinity column on Superose 12 revealed 6 protein peaks. Affinity crosslinking of the peak fractions from FPLC resulted in single bands with a molecular weight of 75 K under reducing conditions with variable specificity for IGF-II.  相似文献   

6.
7.
Rhythmically active neuronal networks give rise to rhythmic motor activities but also to seemingly non-rhythmic behaviors such as sleep, arousal, addiction, memory and cognition. Many of these networks contain pacemaker neurons. The ability of these neurons to generate bursts of activity intrinsically lies in voltage- and time-dependent ion fluxes resulting from a dynamic interplay among ion channels, second messenger pathways and intracellular Ca2+ concentrations, and is influenced by neuromodulators and synaptic inputs. This complex intrinsic and extrinsic modulation of pacemaker activity exerts a dynamic effect on network activity. The nonlinearity of bursting activity might enable pacemaker neurons to facilitate the onset of excitatory states or to synchronize neuronal ensembles--an interactive process that is intimately regulated by synaptic and modulatory processes.  相似文献   

8.
Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naïve library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.  相似文献   

9.
The N-methyl-D-aspartate (NMDA) receptors are glutamate-regulated ion channels that are critically involved in important physiological and pathological functions of the mammalian central nervous system. We have identified and characterized the gene encoding the human NMDA receptor subunit NR3A (GRIN3A), as well as the gene (GRIN3B) encoding an entirely novel subunit that we named NR3B, as it is most closely related to NR3A (57.4% identity). GRIN3A localizes to chromosome 9q34, in the region 13-34, and consists of nine coding exons. The deduced protein contains 1115 amino acids and shows 92.7% identity to rat NR3A. GRIN3B localizes to chromosome 19p13.3 and contains, as does the mouse NR3B gene (Grin3b), eight coding exons. The deduced proteins of human and mouse NR3B contain 901 and 900 amino acid residues, respectively (81.6% identity). In situ hybridization shows a widespread distribution of Grin3b mRNA in the brain of the adult rat.  相似文献   

10.
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0. 4-cM (±0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.  相似文献   

11.
Epigenetic marks, such as cytosine methylation and post-translational histone modifications, are important for interpreting and managing eukaryotic genomes. Recent genetic studies in plants have uncovered details on the different interwoven mechanisms that are responsible for specification of genomic cytosine methylation patterns. These mechanisms include targeting cytosine methylation using heterochromatic histone modifications and RNA guides. Genomic cytosine methylation patterns also reflect locus-specific demethylation initiated by specialized DNA glycosylases. While genetics continues to more fully define these mechanisms, genomic studies in Arabidopsis have yielded an unprecedented high-resolution view of how epigenetic marks are layered over a genome.  相似文献   

12.
Bacterial multidrug resistance is a serious clinical problem and is commonly conferred by tripartite efflux 'pumps' in the prokaryotic cell envelope. Crystal structures of the three components of a drug efflux pump have now been solved: the outer membrane TolC exit duct in the year 2000, the inner membrane AcrB antiporter in 2002 and the periplasmic adaptor MexA in 2004. These structures have enhanced our understanding of the principles underlying pump assembly and operation, and present pumps as new drug targets.  相似文献   

13.
Recently, studies on specification of axes in the developing embryo have focused on the heart, which is the first functional organ to form and probably responds to common cues controlling positional information in surrounding tissues. The early differentiation of heart cells affords an opportunity to link the acquisition of regional identity with the signals underlying terminal differentiation. In the past year, a wealth of information on these signals has emerged, elucidating the general pathways controlling body axes in the context of the developing heart.  相似文献   

14.
Sun Q  Ng C  Guy GR  Sivaraman J 《FEBS letters》2011,(2):281-285
Previously, we have demonstrated that the tyrosine phosphorylated hepatocyte growth factor receptor (Met) binds to the c-Cbl phosphotyrosine-recognition, tyrosine kinase binding (TKB) domain in a reverse orientation compared to other c-Cbl binding partners. A Met peptide with the DpYR motif changed to RpYD (MetRD) retains a similar TKB binding affinity as the native Met peptide. However, the TKB: MetRD complex crystal structure reveals a complete reversal of the binding orientation. Collated data indicates that both binding and orientation is dictated by the phosphorylated tyrosine and an adjacent arginine forming intra-peptide hydrogen bonds and aligning unidirectionally with complementary charges in the phosphotyrosine binding pocket of c-Cbl.

Structured summary

c-Cbl and MetRDbind: shown by x-ray crystallography (view interaction)c-Cbl and MetRDbind: shown by mass spectrometry studies of complexes (view interaction)c-Cblbind to Met: shown by surface plasmon resonance (view interactions 1,2)  相似文献   

15.
The insulin-like growth factors 2 (IGF2) is a peptide hormone that binds to the insulin-like growth factor 1 receptor (IGF1R) and is abundantly stored in bone. IGF1R is deeply involved in the pathogenesis of many cancers that growth within bone and is also involved in osteoclast biology. Among different cell lines representative of osteolytic tumors, we found a very high expression of IGF2 in SH-SY5Y cells derived from neuroblastoma (NB). We previously showed that NB cells induce an osteolytic process through the Osteoprotegerin/RANKL/RANK and the canonical Wnt pathway system. Here, we hypothesized that NB promotes osteoclastogenesis also via IGF2. First, we demonstrated the presence of IGF1R on the osteoclast basolateral membrane, and we observed a cyclic IGF1R activation along with the differentiation process, also when induced by SH-SY5Y. Moreover, we found that IGF2 mRNA expression in SH-SY5Y cells was further increased when co-cultured with mesenchymal stromal cells, suggesting that IGF2 is important for NB interaction with the bone microenvironment. Finally, the treatment of SH-SY5Y cells with an anti-IGF2 siRNA or the addition of anti-IGF1R molecules impaired NB-induced osteoclastogenesis, even though the chemoattraction of monocytes by NB cells was unaffected. Our findings suggest that in IGF2-producing osteolytic tumors IGF1R is a good candidate for targeted therapies in combination with conventional drugs.  相似文献   

16.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

17.
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.  相似文献   

18.
Genes that control the development of migrating muscle precursor cells   总被引:9,自引:0,他引:9  
Skeletal muscles in vertebrates, despite their functional and biochemical similarities, are generated via diverse developmental mechanisms. A major subclass of hypaxial muscle groups is derived from long-range migrating progenitor cells that delaminate from the dermomyotome. The development of this lineage is controlled by Pax3, the c-Met tyrosine kinase receptor, its ligand SF/HGF (scatter factor/hepatocyte growth factor) and the homeobox factor Lbx1. These molecules are essential for establishment of the precursor pool, delamination, migration and target finding. Progress has been made in understanding patterning of the muscles, which requires a precise control of proliferation and differentiation of myogenic precursor cells.  相似文献   

19.
Suzanne R. Pfeffer 《FEBS letters》2009,583(23):3811-913
Proteins use multiple routes for transport from endosomes to the Golgi complex. Shiga and cholera toxins and TGN38/46 are routed from early and recycling endosomes, while mannose 6-phosphate receptors are routed from late endosomes. The identification of distinct molecular requirements for each of these pathways makes it clear that mammalian cells have evolved more complex targeting mechanisms and routes than previously anticipated.  相似文献   

20.
Living cells rival computers in their ability to process external information and make complex behavioral decisions. Many of these decisions are made by networks of interacting signaling proteins. Ongoing structural, biochemical and cell-based studies have begun to reveal several common principles by which protein components are used to specifically transmit and process information. Recent engineering studies demonstrate that these relatively simple principles can be used to rewire signaling behavior in a process that mimics the evolution of new phenotypic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号