首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large-scale transient expression from mammalian cells is a new technology. Breakthroughs have been achieved for non-viral delivery methods: transfections can now be done at the 1-10 L scale with mammalian cells grown in suspension. Production of 1-20 mg/L of recombinant protein have been obtained in stirred bioreactors. Modified alphaviruses have provided a fast and efficient expression technology based on viral vectors.  相似文献   

2.
The baculovirus vector systems has been extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which has the capability to express multiple genes simultaneously within a single infected insect cells and to use recombinant virus with mammalian cell-active expression cassettes to permit expression of recombinant proteins in mammalian cells in vitro and in vivo. Future investigations of the baculovirus expression system designed for specific target cells, can open wide variety of applications. This review summarizes the recent achievements in applications the baculovirus vector systems and optimization recombinant protein expression in both insect and mammalian cell lines.  相似文献   

3.
4.

Background  

The development of appropriate expression vectors for large scale protein production constitutes a critical step in recombinant protein production. The use of conventional expression vectors to obtain cell lines is a cumbersome procedure. Often, stable cell lines produce low protein yields and production is not stable over the time. These problems are due to silencing of randomly integrated expression vectors by the surrounding chromatin. To overcome these chromatin effects, we have employed a Bacterial Artificial Chromosome (BAC) as expression vector to obtain stable cell lines suitable for protein production.  相似文献   

5.
Baculovirus vector systems are extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which makes it possible to express multiple genes simultaneously within a single infected insect cell and to obtain multimeric proteins functionally similar to their natural analogs. Recombinant viruses with expression cassettes active in mammalian cells are used to deliver and express genes in mammalian cells in vitro and in vivo. Further improvement of the baculovirus expression system and its adaptation to specific target cells can open up a wide variety of applications. The review considers recent achievements in the use of modified baculoviruses to express recombinant proteins in eukaryotic cells, advantages and drawbacks of the baculovirus expression system, and ways to optimize the expression of recombinant proteins in both insect and mammalian cell lines.  相似文献   

6.
Recombinant proteins (r-proteins) are increasingly important in fundamental research and for clinical applications. As many of these r-proteins are of human or animal origin, cultivated mammalian cells are the host of choice to ensure their functional folding and proper posttranslational modifications. Large-scale transfection of human embryonic kidney 293 or Chinese hamster ovary cells is now an established technology that can be used in the production of hundreds of milligram to gram quantities of a r-protein in less than 1 mo from cloning of its cDNA. This chapter aims to provide an overview of large-scale transfection technology with a particular emphasis on calcium phosphate and polyethylenimine-mediated gene transfer.  相似文献   

7.
Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l.  相似文献   

8.
In spite of the generally stable nature of immobilized perfusion culture, its profile of target protein production frequently shows variations. This might be explained by the drift in the metabolism of cultured cells. To address this issue, we performed a set of four Opticell bioreactor cultures producing recombinant anticogulant protein PCGFX. All the cultures lasted 40-50 days with the oxygen consumption rate (OCR) mostly around 10 μmol min−1; nevertheless, glucose and lactate metabolism was fluctuated with a parallel fluctuation in the recombinant protein productivity (RPP). The mean productivity of recombinant PCGFX was determined to be about 1.0 mg day−1 for all the cultures. The statistical analysis revealed a significant correlation between the lactate production rate (LPR) and RPP in two cultures. A significant correlation was further found between average OCR and RPP in another culture where OCR was exceptionally lowered under serum-free conditions. No parameter significantly correlated with RPP in the remaining one culture; thus, the overt drift of RPP resulted, at least partly, from that of the cell metabolic activity and the present data should be helpful to explore a strategy for maximizing productivity.  相似文献   

9.
The production of recombinant proteins for biotherapeutic use is a multibillion dollar industry, which has seen continual growth in recent years. In order to produce the best protein with minimal cost and time, selection methods are utilized during the cell line development process in order to select for the most desirable clonal cell line from a heterogeneous transfectant pool. Today, there is a vast array of potential selection methods available, which vary in cost, complexity and efficacy. This review aims to highlight cell line selection methods that exist for the isolation of high‐producing clones, and also reviews techniques that can be used to predict, at a small scale, the performance of clones at large, industrially‐relevant scales.  相似文献   

10.
Methods to increase the production of recombinant proteins in mammalian cell cultures have been developed which reduce in-culture growth through prohibiting progression of the cell cycle. This arrest increases the proportion of cells in the G1-phase of the cell cycle, and subsequently increases their specific productivity (QP). Through careful balancing of the decreased growth rate with an increased QP, multi-fold increases in recombinant protein yield can be achieved.  相似文献   

11.
12.
This study describes the development of a transient expression system for CHO cells based on autonomous replication and retention of transfected plasmid DNA. A transient expression system that allows extrachromosomal amplification of plasmids permits more plasmid copies to persist in the transfected cell throughout the production phase leading to a significant increase in transgene expression. The expression system, named Epi-CHO comprises (1) a CHO-K1 cell line stably transfected with the Polyomavirus (Py) large T (LT) antigen gene (PyLT) and (2) a DNA expression vector, pPyEBV encoding the Py origin (PyOri) for autonomous plasmid amplification and encoding Epstein-Barr Virus (EBV) nuclear antigen-1 (EBNA-1) and OriP for plasmid retention. The CHO-K1 cell line expressing PyLT, named CHO-T was adapted to suspension growth in serum-free media to facilitate large-scale transient transfection and recombinant gene expression. Enhanced green fluorescent protein (EGFP) and human growth hormone (hGH) were used as reporter proteins to demonstrate transgene expression and productivity. Transfection of suspension-growing CHO-T cells with the vector pPyEBV encoding hGH resulted in a final concentration of 75 mg L(-1) of hGH in culture supernatants 11 days following transfection.  相似文献   

13.
14.
Recombinant DNA technology provides the potential to produce in large quantity previously scarce or even completely novel proteins by expression of cloned or designed genes in an appropriate host cell type. It has recently become clear that bacterial expression systems are often inappropriate for complex eukaryotic proteins but the high levels of expression of genes introduced into mammalian cells mean that bulk fermentation of animal cells provides an important alternative for the production of valuable proteins.  相似文献   

15.
Production of recombinant protein therapeutics in cultivated mammalian cells   总被引:30,自引:0,他引:30  
Wurm FM 《Nature biotechnology》2004,22(11):1393-1398
Cultivated mammalian cells have become the dominant system for the production of recombinant proteins for clinical applications because of their capacity for proper protein folding, assembly and post-translational modification. Thus, the quality and efficacy of a protein can be superior when expressed in mammalian cells versus other hosts such as bacteria, plants and yeast. Recently, the productivity of mammalian cells cultivated in bioreactors has reached the gram per liter range in a number of cases, a more than 100-fold yield improvement over titers seen for similar processes in the mid-1980s. This increase in volumetric productivity has resulted mainly from improvements in media composition and process control. Opportunities still exist for improving mammalian cell systems through further advancements in production systems as well as through vector and host cell engineering.  相似文献   

16.
17.
The inducible T-REx system and other inducible expression systems have been developed in order to control the expression levels of recombinant protein in mammalian cells. In order to study the effects of heterologous protein expression on mammalian host behavior, the gene for recombinant Human transferrin (hTf) was integrated into HEK-293 cells and expressed under the control of the T-REx inducible technology (293-TetR-Hyg-hTf) or using a constitutive promoter (293-CMV-hTf). A number of inducible clones with variable expression levels were identified for the T-REx system with levels of hTf for the high expressing clones nearly double those obtained using the constitutive cytomegalovirus (CMV) promoter. The level of transferrin produced was found to increase proportionately with tetracycline concentration between 0 and 1 mug/mL with no significant increases in transferrin production above 1 mug/mL. As a result, the optimal induction time and tetracycline concentrations were determined to be the day of plating and 1 mug/mL, respectively. Interestingly, the cells induced to express transferrin, 293-TetR-Hyg-hTf, exhibited lower viable cell densities and percent viabilities than the uninduced cultures for multiple clonal isolates. In addition, the induction of transferrin expression was found to cause an increase in the expression of the ER-stress gene, BiP, that was not observed in the uninduced cells. However, both uninduced and induced cell lines containing the hTf gene exhibited longer survival in culture than the control cells, possibly as a result of the positive effects of hTf on cell survival. Taken together, these results suggest that the high level expression of complex proteins in mammalian cells can limit the viable cell densities of cells in culture as a result of cellular stresses caused by generating proteins that may be difficult to fold or are otherwise toxic to cells. The application of inducible systems such as the T-REx technology will allow us to optimize protein production while limiting the negative effects that result from these cellular stresses.  相似文献   

18.
A stably transformed BHK cell line, engineered to produce a human transferrin half-molecule under the control of a mouse metallothionein (MT) promoter, was used as a model system to develop strategies to increase inducible recombinant protein production. Gene expression regulated by the MT promoter is induced by heavy metals (e.g. Zn+2 or Cd+2) in a dose dependent fashion. However, at high concentrations these metals are toxic to cells. Culture protocols which balance these counteractive effects are needed to maximize transferrin production. Fully induced cells produced up to 0.7 pg transferrin/cell·h, a 3-fold increase in production over uninduced levels. Cell growth was inhibited at Cd+2 dosages above 1 fmol/cell; prolinged exposure at this dosage was cytotoxic. Cell specific transferrin productivities decreased within 48 h following induction with Cd+2 although cell-associated Cd+2 levels remain high. Further addition of Cd+2 to cultures restored cell specific transferrin production rates. This suggests that cell associated Cd+2 is sequestered into a form which does not stimulate the MT promoter. Cd+2 dosing regimes which maintained cell associated Cd+2 concentrations between 0.2 and 0.35 fmol/cell ensured cell growth and high cell specific productivities which maximized final product titers. For routine batch culture, initial Cd+2 loadings of 0.8 fmol/cell gave near-maximum transferrin production levels. For extended culture, repeated small doses of 0.5 fmol/cell every 24 to 48 h maximized transferrin synthesis with this cell line.  相似文献   

19.
20.
Genetically modified mammalian cells are the preferred system for the production of recombinant therapeutic glycoproteins. Other applications include engineering of cell lines for drug screening and cell-based therapies, and the construction of recombinant viruses for gene therapy. This article highlights contemporary core genetic technologies and emerging strategies for genetically engineering mammalian cells for optimal recombinant-protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号