首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).  相似文献   

2.
Summary 1. Acetylation of morphine at the 6-position changes its pharmacology. To see if similar changes are seen with codeine, we examined the analgesic actions of codeine and 6-acetylcodeine.2. Like codeine, 6-acetylcodeine is an effective analgesic systemically, supraspinally and spinally, with a potency approximately a third that of codeine.3. The sensitivity of 6-acetylcodeine analgesia to the mu-selective antagonists β-FNA and naloxonazine confirmed its classification as a mu opioid. However, it differed from the other mu analgesics in other paradigms.4. Antisense mapping revealed the sensitivity of 6-acetylcodeine to probes targeting exons 1 and 2 of the mu opioid receptor gene (Oprm), a profile distinct from either codeine or morphine. Although heroin analgesia also is sensitive to antisense targeting exons 1 and 2, heroin analgesia also is sensitive to the antagonist 3-O-methylnaltrexone, while 6-acetylcodeine analgesia is not.5. Thus, 6-acetylcodeine is an effective mu opioid analgesic with a distinct pharmacological profile.  相似文献   

3.
万涛  郑军 《生命的化学》2021,(2):361-367
纳布啡是一种新型的菲族镇痛药,属于混合型阿片类受体激动/拮抗剂,可在脊髓水平激动κ受体发挥强效的镇痛效果,其镇痛作用起效迅速、药效持久、疗效确切;同时由于纳布啡独特的部分μ受体拮抗特性,使其与吗啡相比,在发挥镇痛作用的同时呼吸抑制轻、血流动力学平稳以及恶心呕吐、皮肤瘙痒、成瘾性等不良反应发生率更低,因此,纳布啡在围手术期镇痛和临床麻醉等多个领域有着广阔的应用前景。现结合纳布啡独特的药代动力学、药理学特点及作用机制,对纳布啡在围手术期镇痛的研究进展作一综述,以期为临床上合理、有效镇痛提供理论参考和实践依据。  相似文献   

4.
These studies examined the effect of cocaine on the analgesia produced by systemically and centrally administered opioid agonists. Cocaine (50 mg/kg, s.c.) increased the analgesic potency of systemic, ICV and IT morphine; and the ICV and IT analgesic effects of the delta selective peptide, [D-Pen2,D-Pen5]enkephalin (DPDPE). Cocaine also increased the analgesic potency of the mu selective ligand [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAGO) administered ICV. However, cocaine did not alter the ED50 for IT DAGO. GC-MS studies indicated that brain cocaine concentration was approximately 3.0 micrograms/g wet weight 45 min following s.c. administration. These results suggest that cocaine-induced increases in opioid analgesic potency are mediated at brain mu and delta receptors and spinal mu receptors. Furthermore, there might be functional differences between spinal and supraspinal sites at which DAGO produces analgesia.  相似文献   

5.
We tested the role of sex chromosome complement and gonadal hormones in sex differences in several different paradigms measuring nociception and opioid analgesia using "four core genotypes" C57BL/6J mice. The genotypes include XX and XY gonadal males, and XX and XY gonadal females. Adult mice were gonadectomized and tested 3-4 weeks later, so that differences between sexes (mice with testes vs. ovaries) were attributable mainly to organizational effects of gonadal hormones, whereas differences between XX and XY mice were attributable to their complement of sex chromosomes. In Experiment 1 (hotplate test of acute morphine analgesia), XX mice of both gonadal sexes had significantly shorter hotplate baseline latencies prior to morphine than XY mice. In Experiment 2 (test of development of tolerance to morphine), mice were injected twice daily with 10 mg/kg morphine or saline for 6 days. Saline or the competitive NMDA antagonist CPP (3-(2-carboxypiperazin-4yl) propyl-1-phosphonic acid) (10 mg/kg) was co-injected. On day 7, mice were tested for hotplate latencies before and after administration of a challenge dose of morphine (10 mg/kg). XX mice showed shorter hotplate latencies than XY mice at baseline, and the XX-XY difference was greater following morphine. In Experiment 3, mice were injected with morphine (10 mg/kg) or saline, 15 min before intraplantar injection of formalin (5%/25 microl). XX mice licked their hindpaw more than XY mice within 5 min of formalin injection. The results indicate that X- or Y-linked genes have direct effects, not mediated by gonadal secretions, on sex differences in two different types of acute nociception.  相似文献   

6.
Corticotropin-releasing factor (CRF) participates in development of stress-induced analgesia. Midbrain periaqueductal grey matter (MPAG) is one of crucial structures of the brain antinociceptive system. The aim of the study was to investigate effects of the CRF administration into the MPAG on pain sensitivity in alert rats and contribution of opioid mechanisms to these CRF-induced effects. Somatic pain sensitivity was tested by tail flick response latency following thermal stimuli. The opioid antagonist naltrexone administered systemically or centrally into the MPAG was used to study involvement ofopioid mechanisms in the CRF-induced effects. The CRF administration (0.7 microg/rat) into the MPAG caused analgesic effect. The CRF-induced analgesic effects were eliminated by systemic as well as central naltrexone pretreatment. Effect of central naltrexone on the CRF-induced analgesia manifested itself faster as compared with effect of systemic naltrexone. The data obtained suggest that one of central mechanisms of the CRF-induced analgesic effect on somatic pain sensitivity in alert rats may be mediated by the MPAG neurons and provided by involvement of opioid mechanisms.  相似文献   

7.
病理性疼痛的分子机制   总被引:2,自引:0,他引:2  
张旭 《生命科学》2008,20(5):707-708
持续性或慢性疼痛是很多患者的主要描述症状。然而,现在的治疗手段还不能充分解决某些疼痛或会引起不能忍受的副作用。近来疼痛生物学者阐明了大量的参与疼痛发生和维持的细胞和分子活动。如何更好的理解这些分子活动的机制将有助于发展高效的,特异性的治疗手段。背根神经节中小细胞神经元向脊髓传递温觉和伤害性信息的感觉传递。这些神经元的外周突感受生理性和化学性刺激后,可以在脊髓背角的中枢突通过突触囊泡和大致密性囊泡释放兴奋性的神经递质和神经肽。这种兴奋性突触传递可以被一些抑制因子调控如脊髓中间神经元和下行系统中分泌的阿片肽、GABA、甘氨酸、5-羟色胺。本文将回顾脊髓抑制性系统所取得的一些研究进展,将重点介绍在阿片受体转运,阿片镇痛以及吗啡耐晋研究中的进展,这些发现可能的治疗前景也会一并讨论。  相似文献   

8.
Bodnar RJ  Klein GE 《Peptides》2005,26(12):2629-2711
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.  相似文献   

9.
There is evidence suggesting that the endogenous tetrapeptide, Tyr-MIF-1 (Tyr-Prol-Leu-Gly-amide), has antagonistic or modulatory effects on opioid-mediated analgesia. There is also substantial evidence for sex differences in opioid effects, whereby male rodents display greater levels of opioid-mediated analgesia than females. In the present study, determinations were made of the effects of Tyr-MIF-1 on morphine- and restraint stress-induced opioid analgesia in adult male and female deer mice, Peromyscus maniculatus. Intraperitoneal treatment with Tyr-MIF-1 (0.10–10 mg/kg) reduced morphine- and stress-induced analgesia in both male and female mice, with Tyr-MIF-1 having markedly greater antagonistic effects in male than female mice. These results indicate that there are sex differences in the modulatory (antiopiate) effects of Tyr-MIF-1 on opioid-mediated analgesia.  相似文献   

10.
The nociceptin opioid receptor (NOP) and its endogenous peptide ligand nociceptin/orphanin FQ have been shown to modulate the pharmacological effects of the classical opioid receptor system. Suppression of opioid-induced reward associated with mu-opioid receptor (MOP)-mediated analgesia, without decreasing anti-nociceptive efficacy, can potentially be achieved with NOP agonists having bifunctional agonist activity at MOP, to afford ‘non-addicting’ analgesics. In Part II of this series, we describe a continuing structure–activity relationship (SAR) study of the NOP-selective piperidin-4-yl-1,3-dihydroindol-2-one scaffold, to obtain bifunctional activity at MOP, and a suitable ratio of NOP/MOP agonist activity that produces a non-addicting analgesic profile. The SAR reported here is focused on the influence of various piperidine nitrogen aromatic substituents on the ratio of binding affinity and intrinsic activity at both the NOP and MOP receptors.  相似文献   

11.
M Kavaliers  D Innes 《Peptides》1992,13(3):603-607
There is evidence suggesting that the endogenous mammalian octapeptide FLFQPQRFamide (F8Fa or neuropeptide FF, NPFF) has modulatory effects on opioid-mediated analgesia in rodents. There is also substantial evidence for sex differences in opioid analgesia, whereby male rats and mice display greater levels of opioid-mediated analgesia than females. In the present study, determinations were made of the effects of NPFF and IgG from antiserum against NPFF on morphine- and restraint stress-induced opioid analgesia in male and female deer mice. Intracerebroventricular (ICV) administrations of NPFF (0.10-10 micrograms) reduced in a dose-dependent manner morphine- and stress-induced analgesia in both male and female mice, with NPFF having markedly greater antagonistic effects in the male than female mice. Additionally, ICV administrations of NPFF-IgG increased the levels of morphine- and stress-induced analgesia and significantly reduced basal nociceptive sensitivity in male mice, whereas, in female mice, NPFF-IgG had no significant effects on either opioid-mediated analgesia or nociceptive sensitivity. These results indicate that there are sex differences in the modulatory effects of NPFF on opioid-mediated analgesia.  相似文献   

12.
Increasing evidence suggests there is a sex difference in opioid analgesia of pain arising from somatic tissue. However, the existence of a sex difference in visceral pain and opioid analgesia is unclear. This was examined in the colorectal distention (CRD) model of visceral pain in the current study. The visceromotor response (vmr) to noxious CRD was recorded in gonadally intact male and female rats. Subcutaneous injection of morphine dose-dependently decreased the vmr in both groups without affecting colonic compliance. However, morphine was significantly more potent in male rats than females. Because systemic morphine can act at peripheral tissue and in the central nervous system (CNS), the source of the sex difference in morphine analgesia was determined. The peripherally restricted mu-opioid receptor (MOR) antagonist naloxone methiodide dose-dependently attenuated the effects of systemic morphine. Systemic administration of the peripherally restricted MOR agonist loperamide confirmed peripherally mediated morphine analgesia and revealed greater potency in males compared with females. Spinal administration of morphine dose-dependently attenuated the vmr, but there was no sex difference. Intracerebroventricular administration of morphine also dose-dependently attenuated the vmr with significantly greater potency in male rats. The present study documents a sex difference in morphine analgesia of visceral pain that is both peripherally and supraspinally mediated.  相似文献   

13.
Multiple studies demonstrate that coadministration of N-methyl-D-aspartate (NMDA) receptor antagonists with the opioid agonist morphine attenuates the development of analgesic tolerance. Sex differences in the effects of noncompetitive, but not competitive NMDA receptor antagonists on acute morphine analgesia, have been reported in mice, yet the role of sex in modulation of morphine tolerance by NMDA receptor antagonists has yet to be addressed. Therefore, we tested whether there is a sex difference in the effect of NMDA receptor antagonists on the development of morphine analgesic tolerance in C57BL/6J mice. Acutely, at a dose required to affect morphine tolerance in male mice, the noncompetitive NMDA receptor antagonist dizocilpine (MK-801) prolonged morphine analgesia similarly in both sexes in the hot plate and tail withdrawal assays. In the hot plate assay, coadministration of MK-801 or the competitive antagonist 3-(2-carboxpiperazin-4-yl)propyl-1-phosphanoic acid (CPP) with morphine attenuated the development of tolerance in male mice, while having no effect in females. Like normal and sham females, ovariectomized mice were similarly insensitive to the attenuation of morphine tolerance by MK-801 in the hot plate assay. Surprisingly, in the tail withdrawal assay, MK-801 facilitated the development of morphine-induced hyperalgesia and tolerance in males but not females. The results demonstrate that male mice are more sensitive to modulation of nociception and morphine analgesia after repeated coadministration of NMDA receptor antagonists. Furthermore, the underlying mechanisms are likely to be different from those mediating the sex difference in the modulation of acute morphine analgesia that has previously been reported.  相似文献   

14.
Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands.  相似文献   

15.
In recent years it has become apparent that sex is a major factor involved in modulating the pharmacological effects of exogenous opioids. The kappa opioid receptor (KOPR) system is a potential therapeutic target for pain, mood disorders and addiction. In humans mixed KOPR/MOPR ligands have been found to produce greater analgesia in women than men. In contrast, in animals, selective KOPR agonists have been found to produce greater antinociceptive effects in males than females. Collectively, the studies indicate that the direction and magnitude of sex differences of KOPR-mediated antinociception/analgesia are dependent on species, strain, ligand and pain model examined. Of interest, and less studied, is whether sex differences in other KOPR-mediated effects exist. In the studies conducted thus far, greater effects of KOPR agonists in males have been found in neuroprotection against stroke and suppression of food intake behavior. On the other hand, greater effects of KOPR agonists were found in females in mediation of prolactin release. In modulation of drugs of abuse, sex differences in KOPR effects were observed but appear to be dependent on the drug examined. The mechanism(s) underlying sex differences in KOPR-mediated effects may be mediated by sex chromosomes, gonadal hormonal influence on organization (circuitry) and/or acute hormonal influence on KOPR expression, distribution and localization. In light of the diverse pharmacology of KOPR we discuss the need for future studies characterizing the sexual dimorphism of KOPR neural circuitry and in examining other behaviors and processes that are modulated by the KOPR.  相似文献   

16.
Biting flies influence both physiology and behaviour of domestic and wild animals. This study demonstrates that brief (30 min) exposure of male and female mice to stable flies leads to significant increases in nociceptive responses, indicative of the induction of analgesia. The biting fly-induced analgesia was mediated by endogenous opioid systems as it was blocked by the prototypic opiate antagonist naloxone. Exposure for 30 min to the bedding of biting fly-exposed mice also induced significant opioid mediated analgesic responses in mice. Exposure to either house flies or the bedding of house fly-exposed mice had no significant effects on nociception. These results indicate that brief exposure to either stable flies, or to olfactory cues associated with mice exposed to stable flies, activates endogenous opioid systems leading to the induction of analgesia and likely other opioid mediated behavioural and physiological stress responses. These results suggest the involvement of endogenous opioid systems in the mediation of the behavioural and physiological consequences of biting fly exposure in domestic and wild animals.  相似文献   

17.
Delta opioid receptor (DOR) agonists are attractive potential analgesics, since these compounds exhibit strong antinociceptive activity with relatively few side effects. In the past decade, several novel classes of delta-opioid agonists have been synthesized. Recent experimental data indicate that structurally distinct opioid agonists interact differently with the delta-opioid receptor. Consequently, individual agonist-bound DOR conformations may interact differently with intracellular proteins. In the present paper, after a brief review of the cellular processes that contribute to homologous desensitization of the DOR signaling, we shall focus on experimental data demonstrating that chemically different agonists differ in their ability to phosphorylate, internalize, and/or down-regulate the DOR. Homologous regulation of the opioid receptor signaling is thought to play an important role in the development of opioid tolerance. Therefore, agonist-specific differences in DOR regulation suggest that by further chemical modification, delta-selective opioid analgesics can be designed that exhibit a reduced propensity for analgesic tolerance.  相似文献   

18.
We previously demonstrated that chronic treatment of rats with the mu-opioid receptor agonist sufentanil induced pharmacological tolerance associated with mu-opioid receptor desensitization and down-regulation. Administration of the calcium channel blocker nimodipine during chronic treatment with sufentanil prevented mu-opioid receptor down-regulation, induced down-stream supersensitization, and produced supersensitivity to the opioid effects. The focus of the present study was to determine a role for G protein-coupled receptor kinases (GRKs) and beta-arrestin 2 in agonist-induced mu-opioid receptor signalling modulation during chronic opioid tolerance and supersensitivity. Tolerance was induced by 7-day chronic infusion of sufentanil (2 microgram/h). Supersensitivity was induced by concurrent infusion of sufentanil (2 microgram/h) and nimodipine (1 microgram/h) for 7 days. Antinociception was evaluated by the tail-flick test. GRK2, GRK3, GRK6 and beta-arrestin 2 immunoreactivity levels were determined by western blot in brain cortices. Acute and chronic treatment with sufentanil induced analgesic tolerance, associated with up-regulation of GRK2, GRK6, and beta-arrestin 2. GRK3 expression only was increased in the acutely treated group. When nimodipine was associated to the chronic opioid treatment, tolerance expression was prevented, and immunoreactivity levels of GRK2, GRK6 and beta-arrestin 2 recovered the control values. These data indicate that GRK2, GRK3, GRK6 and beta-arrestin 2 are involved in the short- and long-term adaptive changes in mu-opioid receptor activity, contributing to tolerance development in living animals. These observations also suggest that GRKs and beta-arrestin 2 could constitute pharmacological targets to prevent opioid tolerance development, and to improve the analgesic efficacy of opioid drugs.  相似文献   

19.
μ型阿片受体在阿片类药物镇痛与成瘾中发挥重要作用 .从人脑组织总RNA通过一次反转录和两次PCR法扩增获得 μ型阿片受体的cDNA ,将其克隆至pcDNA3 1 (+)中 ,转染CHO细胞后 ,筛选单克隆细胞株并制备膜受体 ,检测重组细胞株表达的 μ型阿片受体与特异性配体的结合能力 .通过饱和性结合和竞争性结合试验证实 ,重组细胞株表达的 μ型阿片受体与天然的 μ型阿片受体具有基本一致的生物学特性 ,为进一步研究阿片受体与配体相互作用的分子机制打下了基础  相似文献   

20.
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, “Endogenous opioids and feeding behavior: a thirty-year historical perspective”, summarizing research in this field between 1974 and 2003. The present review “closes the circle” by reviewing the last 10 years (2004–2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号