首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Premise

Domestication of plant species results in phenotypic modifications and changes in biotic interactions. Most studies have compared antagonistic plant-herbivore interactions of domesticated plants and their wild relatives, but little attention has been given to how domestication influences plant-pollinator interactions. Floral attributes and interactions of floral visitors were compared between sister taxa of the genus Cucurbita (Cucurbitaceae), the domesticated C. moschata, C. argyrosperma ssp. argyrosperma and its wild progenitor C. argyrosperma ssp. sororia in the place of origin.

Methods

We conducted univariate and multivariate analyses to compare floral morphological traits and analyzed floral reward (nectar and pollen) quantity and quality between flowers of wild and domesticated Cucurbita taxa. Staminate and pistillate flowers of all three taxa were video recorded, and visitation and behavior of floral visitors were registered and analyzed.

Results

Most floral morphological characteristics of flowers of domesticated taxa were larger in both staminate and pistillate flowers. Staminate and pistillate flowers presented distinct correlations between floral traits and integration indices between domesticated and wild species. Additionally, pollen quantity and protein to lipid ratio were greater in domesticated species. Cucurbit pollen specialists, Eucera spp., had the highest probability of visit for all Cucurbita taxa.

Conclusions

We provide evidence that floral traits of domesticated and wild Cucurbita species experienced different selection pressures. Domesticated Cucurbita species may have more resources invested towards floral traits, thereby increasing attractiveness to pollinators and potentially plant reproductive success. Wild ancestor plant populations should be conserved in their centers of origin to preserve plant-pollinator interactions.  相似文献   

2.
Kim  Bumjin  Yu  Hee-Ju  Park  Sin-Gi  Shin  Ja Young  Oh  Mijin  Kim  Namshin  Mun  Jeong-Hwan 《BMC plant biology》2012,12(1):1-14

Background

Cowpea is a highly inbred crop. It is part of a crop-weed complex, whose origin and dynamics is unknown, which is distributed across the African continent. This study examined outcrossing rates and genetic structures in 35 wild cowpea (Vigna unguiculata ssp. unguiculata var. spontanea) populations from West Africa, using 21 isozyme loci, 9 of them showing polymorphism.

Results

Outcrossing rates ranged from 1% to 9.5% (mean 3.4%), which classifies the wild cowpea breeding system as primarily selfing, though rare outcrossing events were detected in each population studied. Furthermore, the analyses of both the genetic structure of populations and the relationships between the wild and domesticated groups suggest possibilities of gene flow that are corroborated by field observations.

Conclusions

As expected in a predominantly inbred breeding system, wild cowpea shows high levels of genetic differentiation and low levels of genetic diversity within populations. Gene flow from domesticated to wild cowpea does occur, although the lack of strong genetic swamping and modified seed morphology in the wild populations suggest that these introgressions should be rare.  相似文献   

3.
In the thousands of years of rice domestication in Asia, many useful genes have been lost from the gene pool. Wild rice is a key source of diversity for domesticated rice. Genome sequencing has suggested that the wild rice populations in northern Australia may include novel taxa, within the AA genome group of close (interfertile) wild relatives of domesticated rice that have evolved independently due to geographic separation and been isolated from the loss of diversity associated with gene flow from the large populations of domesticated rice in Asia. Australian wild rice was collected from 27 sites from Townsville to the northern tip of Cape York. Whole chloroplast genome sequences and 4,555 nuclear gene sequences (more than 8 Mbp) were used to explore genetic relationships between these populations and other wild and domesticated rices. Analysis of the chloroplast and nuclear data showed very clear evidence of distinctness from other AA genome Oryza species with significant divergence between Australian populations. Phylogenetic analysis suggested the Australian populations represent the earliest‐branching AA genome lineages and may be critical resources for global rice food security. Nuclear genome analysis demonstrated that the diverse O. meridionalis populations were sister to all other AA genome taxa while the Australian O. rufipogon‐like populations were associated with the clade that included domesticated rice. Populations of apparent hybrids between the taxa were also identified suggesting ongoing dynamic evolution of wild rice in Australia. These introgressions model events similar to those likely to have been involved in the domestication of rice.  相似文献   

4.
Aim We aimed to examine the phylogeographical structure and demographic history of domestic and wild yaks (Bos grunniens) based on a wide range of samples and complete mitochondrial genomic sequences. Location The Qinghai‐Tibetan Plateau (QTP) of western China. Methods All available D‐loop sequences for 405 domesticated yaks and 47 wild yaks were examined, including new sequences from 96 domestic and 34 wild yaks. We further sequenced the complete mitochondrial genomes of 48 domesticated and 21 wild yaks. Phylogeographical analyses were performed using the mitochondrial D‐loop and the total genome datasets. Results We recovered a total of 123 haplotypes based on the D‐loop sequences in wild and domestic yaks. Phylogenetic analyses of this dataset and the mitochondrial genome data suggested three well‐supported and divergent lineages. Two lineages with six D‐loop haplogroups were recovered for all morphological breeds of domestic yaks across their distributions in the QTP, while one more lineage and more endemic haplogroups or haplotypes were found for wild yaks. Based on the mitochondrial genome data, the divergences of the three lineages were estimated to have occurred around 420,000 and 580,000 years ago, consistent with the geological records of two large glaciation events experienced in the QTP. Main conclusions There are distinct phylogeographical differences between wild and domestic yaks. However, there is no apparent geographical correlation between identified haplogroups and distributions of domestic yaks. Three differentiated lineages of yaks probably evolved allopatrically in different regions during the Pleistocene glaciation events, then reunited into a single gene pool during post‐glacial population expansion and migrations before the start of the domestication of yaks in the Holocene.  相似文献   

5.

Background

Mature male parr (MMP) represent an important alternative life-history strategy in Atlantic salmon populations. Previous studies indicate that the maturation size threshold for male parr varies among wild populations and is influenced by individual growth, environmental conditions, and genetics. More than ten generations of breeding have resulted in domesticated salmon displaying many genetic differences to wild salmon, including greatly increased growth rates. This may have resulted in domesticated fish with the potential to outgrow the size threshold for early maturation, or evolution of the size threshold of the trait itself. To investigate this, we performed a common-garden experiment under farming conditions using 4680 salmon from 39 families representing four wild, two wild-domesticated hybrid, and two domesticated strains.

Results

Domesticated salmon outgrew wild salmon 2–5-fold, and hybrids displayed intermediate growth. Overall, the numbers of MMP varied greatly among families and strains: averaging 4–12% in domesticated, 18–25% in hybrid, and 43–74% in the wild populations. However, when the influence of growth was accounted for, by dividing fish into lower and upper size modes, no difference in the incidence of MMP was detected among domesticated and wild strains in either size mode. In the lower size mode, hybrids displayed significantly lower incidences of mature males than their wild parental strains. No consistent differences in the body size of MMP, connected to domestication, was detected.

Conclusions

Our data demonstrate: 1- no evidence for the evolution of the size threshold for MMP in domesticated salmon, 2- the vastly lower incidence of MMP in domesticated strains under aquaculture conditions is primarily due to their genetically increased growth rate causing them to outgrow the size threshold for early maturation, 3- the incidence of MMP is likely to overlap among domesticated and wild salmon in the natural habitat where they typically display overlapping growth, although hybrid offspring may display lower incidences of mature male parr. These results have implications for wild salmon populations that are exposed to introgression from domesticated escapees.
  相似文献   

6.
白逢彦 《微生物学报》2023,63(5):1748-1770
酿酒酵母(Saccharomyces cerevisiae)被广泛应用于酒类酿造和食品发酵等行业,其被人类利用的历史已有近万年。酿酒酵母也是遗传学、分子生物学、基因组学和合成生物学等研究中常用的模式生物。近年来研究者对其自然和驯养种群进行了全球范围的生态学、群体遗传学和群体基因组学等方面的研究,更新了对其生态分布、遗传多样性、自然进化和驯养史以及进化动力等方面的认知。发现酿酒酵母在原始森林等自然环境中普遍存在,并可能偏好阔叶树树干、腐木和周围土壤等生境。中国酿酒酵母的遗传多样性显著高于世界其他地区,该物种最古老的谱系也仅发现于中国,说明中国可能是该物种的起源地。生态适应是塑造该物种群体结构的主要力量,导致其野生和驯养群体之间的明显分化。驯养群体又分化为固态发酵和液态发酵两大类群,每个类群内又形成不同的驯养谱系。该物种野生群体的遗传多样性远高于其驯养群体,而野生群体遗传多样性的形成主要由中性突变引起。中国野生和驯养群体在麦芽糖利用能力、基因组杂合性、子囊孢子形成率和孢子活力等方面表现出显著差异,表明这2个群体采取不同的生活策略来适应其不同的生活环境。驯养群体通过群体或谱系特异性基因拷贝数...  相似文献   

7.

Background and Aims

Artificial selection, the main driving force of domestication, depends on human perception of intraspecific variation and operates through management practices that drive morphological and genetic divergences with respect to wild populations. This study analysed the recognition of varieties of Crescentia cujete by Maya people in relation to preferred plant characters and documents ongoing processes of artificial selection influencing differential chloroplast DNA haplotype distribution in sympatric wild and home-garden populations.

Methods

Fifty-three home gardens in seven villages (93 trees) and two putative wild populations (43 trees) were sampled. Through semi-structured interviews we documented the nomenclature of varieties, their distinctive characters, provenance, frequency and management. Phenotypic divergence of fruits was assessed with morphometric analyses. Genetic analyses were performed through five cpDNA microsatellites.

Key Results

The Maya recognize two generic (wild/domesticated) and two specific domesticated (white/green) varieties of Crescentia cujete. In home gardens, most trees (68 %) were from domesticated varieties while some wild individuals (32 %) were tolerated. Cultivation involves mainly vegetative propagation (76 %). Domesticated fruits were significantly rounder, larger and with thicker pericarp than wild fruits. Haplotype A was dominant in home gardens (76 %) but absent in wild populations. Haplotypes B–F were found common in the wild but at low frequency (24 %) in home gardens.

Conclusions

The gourd tree is managed through clonal and sexual propagules, fruit form and size being the main targets of artificial selection. Domesticated varieties belong to a lineage preserved by vegetative propagation but propagation by seeds and tolerance of spontaneous trees favour gene flow from wild populations. Five mutational steps between haplotypes A and D suggest that domesticated germplasm has been introduced to the region. The close relationship between Maya nomenclature and artificial selection has maintained the morphological and haplotypic identity (probably for centuries) of domesticated Crescentia despite gene flow from wild populations.  相似文献   

8.

Background

Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues.

Results

Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places.

Conclusions

This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which are valuable for tea breeding.  相似文献   

9.

Background  

Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution.  相似文献   

10.
Citron (Citrus medica L.) is a medicinally important species of citrus native to India and occurs in natural forests and home gardens in the foothills of the eastern Himalayan region of northeast India. The wild populations of citron in the region have undergone rapid decline due to natural and anthropogenic disturbances and most of the remaining individuals of citron are found in fragmented natural forests and home gardens in the region. In order to assess the genetic structure and diversity of citron in wild and domesticated populations, we analyzed 219 individuals of C. medica collected from four wild and eight domesticated populations using microsatellite markers. The genetic analysis based on five polymorphic microsatellite loci revealed an average of 13.40 allele per locus. The mean observed and expected heterozygosity values ranged between 0.220–0.540 and 0.438–0.733 respectively among the wild and domesticated populations. Domesticated populations showed close genetic relationships as compared to wild populations and pairwise Nei's genetic distance ranged from 0.062 to 2.091 among wild and domesticated populations. Analysis of molecular variance (AMOVA) showed higher genetic diversity among‐ than within populations. The analysis of population structure revealed five groups. Mixed ancestry of few individuals of different populations revealed exchange of genetic materials among farmers in the region. Citron populations in the region show high genetic variation. The knowledge gained through this study is invaluable for devising genetically sound strategies for conservation of citron genetic resources in the region.  相似文献   

11.
Seed pods of wild-type narrow-leafed lupins (Lupinus angustifolius L.) shatter upon maturity, dispersing their seeds. Recessive alleles of the genes Tardus and Lentus that confer reduced pod shattering have been incorporated into domesticated cultivars to facilitate harvesting. Tardus was mapped in an F8 recombinant inbred population of a cross between domesticated and wild lupins. A microsatellite–anchored fragment length polymorphism marker (TaM1), which mapped 2.1 cM from Tardus, was converted to a locus-specific PCR assay. Marker TaM2, a restriction fragment length polymorphism marker was converted to a PCR assay and mapped to 3.9 cM on the other side of Tardus. Marker TaM3, a cleaved amplified polymorphic sequence marker, was positioned along-side marker TaM1 at 3.9 cM from Tardus. One or more markers was polymorphic in 70% of possible pairwise crosses between Australian domesticated lines and wild accessions tested, indicating wide applicability of the markers in crosses between wild and domesticated germplasm.  相似文献   

12.
The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon‐like population, referred to as Taxon A, and O. meridionalis‐like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short‐ and long‐read next‐generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement.  相似文献   

13.
14.
Domesticated materials with well-known wild relatives provide an experimental system to reveal how human selection during cultivation affects genetic composition and adaptation to novel environments. In this paper, our goal was to elucidate how two geographically distinct domestication events modified the structure and level of genetic diversity in common bean. Specifically, we analyzed the genome-wide genetic composition at 26, mostly unlinked microsatellite loci in 349 accessions of wild and domesticated common bean from the Andean and Mesoamerican gene pools. Using a model-based approach, implemented in the software STRUCTURE, we identified nine wild or domesticated populations in common bean, including four of Andean and four of Mesoamerican origins. The ninth population was the putative wild ancestor of the species, which was classified as a Mesoamerican population. A neighbor-joining analysis and a principal coordinate analysis confirmed genetic relationships among accessions and populations observed with the STRUCTURE analysis. Geographic and genetic distances in wild populations were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Domesticated common bean populations possessed lower genetic diversity, higher F ST, and generally higher linkage disequilibrium (LD) than wild populations in both gene pools; their geographic distributions were less correlated with genetic distance, probably reflecting seed-based gene flow after domestication. The LD was reduced when analyzed in separate Andean and Mesoamerican germplasm samples. The Andean domesticated race Nueva Granada had the highest F ST value and widest geographic distribution compared to other domesticated races, suggesting a very recent origin or a selection event, presumably associated with a determinate growth habit, which predominates in this race. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background  

The genus Morus, known as mulberry, is a dioecious and cross-pollinating plant that is the sole food for the domesticated silkworm, Bombyx mori. Traditional methods using morphological traits for classification are largely unsuccessful in establishing the diversity and relationships among different mulberry species because of environmental influence on traits of interest. As a more robust alternative, PCR based marker assays including RAPD and ISSR were employed to study the genetic diversity and interrelationships among twelve domesticated and three wild mulberry species.  相似文献   

16.
BackgroundThe genetic provenance of domesticated plants and the routes along which they were disseminated in prehistory have been a long-standing source of debate. Much of this debate has focused on identifying centers of origins for individual crops. However, many important crops show clear genetic signatures of multiple domestications, inconsistent with geographically circumscribed centers of origin. To better understand the genetic contributions of wild populations to domesticated barley, we compare single nucleotide polymorphism frequencies from 803 barley landraces to 277 accessions from wild populations.ResultsWe find that the genetic contribution of individual wild populations differs across the genome. Despite extensive human movement and admixture of barley landraces since domestication, individual landrace genomes indicate a pattern of shared ancestry with geographically proximate wild barley populations. This results in landraces with a mosaic of ancestry from multiple source populations rather than discrete centers of origin. We rule out recent introgression, suggesting that these contributions are ancient. The over-representation in landraces of genomic segments from local wild populations suggests that wild populations contributed locally adaptive variation to primitive varieties.ConclusionsThis study increases our understanding of the evolutionary process associated with the transition from wild to domesticated barley. Our findings indicate that cultivated barley is comprised of multiple source populations with unequal contributions traceable across the genome. We detect putative adaptive variants and identify the wild progenitor conferring those variants.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0712-3) contains supplementary material, which is available to authorized users.  相似文献   

17.
We evaluated genetic introgression from domesticated pigs into the Ryukyu wild boar (RWB) population on Iriomote Island based on their genetic structure and diversity. We used a combination of mitochondrial DNA D‐loop region (596 bp) polymorphisms and 23 microsatellite markers. RWBs (= 130) were collected from 18 locations on Iriomote Island and compared with 66 reference samples of European and Asian domestic pigs. We identified six distinct haplotypes, involving 22 single nucleotide polymorphisms (including one insertion) in the RWB population. The phylogenetic tree had two branches: the RWB group and domestic lineage. Fourteen of 130 RWBs (10.8%) belonged to the European domestic lineage, including 11 RWBs from the Panari Islands, northwest of Iriomote Main Island (IMI). The heterozygosity values, total number of alleles, number of effective alleles and polymorphism information content of the RWB groups were lower than those of the European domestic groups. The RWB population on IMI had a lower heterozygous deficiency index (FIS = 0.059) than did the other populations, which indicates that this population was more inbred. There was a large genetic distance (FST = 0.560) between RWBs on IMI and the Meishan populations. Structure analysis using the 23 microsatellite markers revealed that 16 RWBs had an admixture pattern between RWB and domesticated pig breeds. These results suggest that gene flow may have occurred from domestic pigs to RWBs and demonstrate that there was low genetic variation in the IMI population.  相似文献   

18.
19.
Morphometric Analysis of Sunflower ( Helianthus annuus L.) Achenes from Mexico and Eastern North America. Sunflower (Helianthus annuus L.) has played a major role in the evolution of agricultural systems in the Americas. The discovery of ancient domesticated remains from archaeological deposits in pre-Columbian Mexico offers new dimensions to widely accepted viewpoints on the domestication pattern of H. annuus. Although American sunflower populations north of Mexico have been examined extensively, Mexican indigenous domesticated landraces have not been studied in any detail. In this study, we morphologically assessed wild and domesticated sunflower achenes from Mexico and compared them to similar datasets from eastern North America. Additionally, we evaluated the utility of four computer-assisted shape measurements in discriminating between wild and domesticated sunflower achenes (fruits) and compared variation in achene size among modern wild and cultivated populations from both Mexico and the U.S. We found that, of the shape parameters tested, none were informative in distinguishing wild achenes from domesticated varieties. Subsequent size analysis, using conventional parameters of length, width, and thickness, showed that modern wild populations from Mexico had smaller achenes compared to modern populations from eastern North America. Domesticated achenes unearthed from Mexican archaeological sites, however, were significantly larger than the early domesticated specimens recovered from eastern North America. Our methodological results indicate that variation in archaeological sunflower achenes is better described by conventional size parameters rather than computerized shape analysis.  相似文献   

20.

Key message

Using newly developed euchromatin-derived genomic SSR markers and a flexible Bayesian mapping method, 13 significant agricultural QTLs were identified in a segregating population derived from a four-way cross of tomato.

Abstract

So far, many QTL mapping studies in tomato have been performed for progeny obtained from crosses between two genetically distant parents, e.g., domesticated tomatoes and wild relatives. However, QTL information of quantitative traits related to yield (e.g., flower or fruit number, and total or average weight of fruits) in such intercross populations would be of limited use for breeding commercial tomato cultivars because individuals in the populations have specific genetic backgrounds underlying extremely different phenotypes between the parents such as large fruit in domesticated tomatoes and small fruit in wild relatives, which may not be reflective of the genetic variation in tomato breeding populations. In this study, we constructed F2 population derived from a cross between two commercial F1 cultivars in tomato to extract QTL information practical for tomato breeding. This cross corresponded to a four-way cross, because the four parental lines of the two F1 cultivars were considered to be the founders. We developed 2510 new expressed sequence tag (EST)-based (euchromatin-derived) genomic SSR markers and selected 262 markers from these new SSR markers and publicly available SSR markers to construct a linkage map. QTL analysis for ten agricultural traits of tomato was performed based on the phenotypes and marker genotypes of F2 plants using a flexible Bayesian method. As results, 13 QTL regions were detected for six traits by the Bayesian method developed in this study.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号