首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The repair of X-ray-induced DNA single-strand breaks was studied after the completion of growth-medium-independent repair in Escherichia coli K-12. A comparison of the sedimentation of DNA from bacteriophages T2 and T7 was used to test the accuracy of our alkaline and neutral sucrose gradient procedures for determining the molecular weight of bacterial DNA. The repair of DNA single-strand breaks by cells incubated in buffer occurred by two processes. About 85% of the repairable breaks were resealed rapidly (t1/2 = less than 6 min), while the remainder were resealed slowly (t1/2 = approximately 20 min). After the completion of the repair of DNA single-strand breaks in buffer, about 80% of the single-strand breaks that remained were found to be associated with DNA double-strand breaks. The subsequent resuspension of cells in growth medium allowed the repair of both DNA single- and double-strand breaks in wild-type but not in recA cells. Thus the recA-dependent, growth-medium-dependent repair of DNA single-strand breaks is essentially the repair of DNA double-strand breaks.  相似文献   

2.
Escherichia coli K-12 cells incubated in buffer can repair most of their X-ray-induced DNA single-strand breaks, but additional single-strand breaks are repaired when the cells are incubated in growth medium. While the radC102 mutant was proficient at repairing DNA single-strand breaks in buffer (polA-dependent repair), it was partially deficient in repairing the additional single-strand breaks (or alkali-labile lesions) that the wild-type strain can repair in growth medium (recA-dependent repair), and this repair deficiency correlated with the X-ray survival deficiency of the radC strain. In studies using neutral sucrose gradients, the radC strain consistently showed a small deficiency in rejoining X-ray-induced DNA double-strand breaks, and it was deficient in restoring the normal sedimentation characteristics of the repaired DNA.  相似文献   

3.
Induction and repair of double- and single-strand DNA breaks have been measured after decays of 125I and 3H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-(125I)iodo-2'-deoxyuridine or with (methyl-3H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10(-14) (double-strand breaks) and 2.82 x 10(-12) (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all.  相似文献   

4.
The survival and repair of single-strand breaks of DNA in gamma-ray-irradiated E. coli adapted to MMS (20 mkg/ml during 3 hours) have been investigated. It is shown that the survival of adapted bacteria of radioresistant strains B/r, H/r30, AB1157 and W3110 pol+ increases with DMF (dose modification factor) ranging within 1.4-1.8 and in radiosensitive strains Bs-1, AB1157 recA13 and AB1157 lexA3 with DMF ranging within 1.3-1.4, and does not change in strains with mutation in polA gene P3478 polA1 and 016 res-3. There is no increase in radioresistance during the adaptation to MMS under the action of the protein synthesis inhibitor chloramphenicol. The increase in radioresistance during the adaptation to MMS correlates with the acceleration of repair of gamma-ray-induced single-strand breaks in the radioresistant strains B/r and W3110 pol+ and with the appearance of the ability to repair some part of DNA single-strand breaks in the mutant Bs-1, which beyond the adaptation to MMS does not repair these damages. The incomplete reparability of DNA single-strand breaks in P3478 polA1 strain cells, both adapted and non-adapted to MMS, is equal.  相似文献   

5.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

6.
The molecular defect in DNA repair caused by ssb mutations (single-strand binding protein) was studied by analyzing DNA synthesis and DNA double-strand break production in UV-irradiated Escherichia coli delta uvrB strains. The presence of the ssb-113 mutation produced a large inhibition of DNA synthesis and led to the formation of double-strand breaks, whereas the ssb-1 mutation produced much less inhibition of DNA synthesis and fewer double-strand breaks. We suggest that the single-strand binding protein plays an important role in the replication of damaged DNA, and that it functions by protecting single-stranded parental DNa opposite daughter-strand gaps from nuclease attack.  相似文献   

7.
Summary The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.  相似文献   

8.
Cell survival, deoxyribonucleic acid (DNA) degradation, and the repair of DNA single-strand breaks were measured for Escherichia coli K-12 pol+, polA1, polC1026(ts), and polA1 polC1026(ts) cells after 137Cs gamma irradiation. The results indicate that DNA polymerase III is required for growth medium-dependent (type III) repair in polA+ or polA cells. In pol+ or polC cells, DNA polymerase I performs type II repair efficiently. The relative deficiencies of each of these strains in DNA repair generally correlate with their relative sensitivities to cell killing and with the extent of DNA degradation observed.  相似文献   

9.
E Boye  W Khnlein    K Skarstad 《Nucleic acids research》1984,12(21):8281-8291
DNA strand breaks induced by Neocarzinostatin in Escherichia coli cells have been characterized. Radioactively labeled phage lambda DNA was introduced into lysogenic host bacteria allowing the phage DNA to circularize into superhelical molecules. After drug treatment DNA single- and double-strand breaks were measured independently after neutral sucrose gradient sedimentation. The presence of alkali-labile lesions was measured in parallel in alkaline sucrose gradients. The cell envelope provided an efficient protection towards the drug, since no strand breaks were detected unless the cells were made permeable with toluene or with hypotonic Tris buffer. In permeable cells, no double strand breaks could be detected, even at high NCS concentration (100 micrograms/ml). Induction of single-strand breaks leveled off after 15 min at 20 degrees C in the presence of 2 mM mercaptoethanol. Exposure to 0.3N NaOH doubled the number of strand breaks. No enzymatic repair of the breaks could be observed.  相似文献   

10.
The X-ray resistance of logarithmic phase cells of Escherichia coli K-12 is enhanced threefold by growth in rich medium versus minimal medium (N. J. Sargentini, W. P. Diver, and K. C. Smith, Radiat. Res. 93, 364-380, 1983). In this work, X-ray-induced DNA strand breaks were assayed by sedimentation in alkaline and neutral sucrose gradients to correlate the enhanced survival of rich-medium-grown cells with an enhanced capacity for DNA repair. While rich-medium-grown cells showed no enhanced capacity for repairing DNA single-strand breaks in buffer, i.e., fast, polA-dependent repair, they did show an enhanced capacity to repair both single-strand and double-strand breaks in growth medium, i.e., slow, recA-dependent repair. This enhanced capacity for DNA repair in rich-medium-grown cells was inhibited by rifampicin post-treatment, indicating the requirement for de novo RNA synthesis. Kinetic studies indicated that the repair of DNA double-strand breaks was a complex process. Relative to the sedimentation rate in neutral sucrose gradients of nonirradiated DNA, the sedimentation rate of X-irradiated DNA first changed from slow to very fast. Based on alkaline sucrose gradient sedimentation studies, all the strand breaks had been repaired during the formation of the very fast sedimenting DNA. With continued incubation, the sedimentation rate of the DNA on neutral sucrose gradients decreased to the normal rate.  相似文献   

11.
Methods of centrifugation in alkaline sucrose gradients as well as alkaline and neutral elution on filters were used to show a significant reduction in the rate of both single- and double-strand DNA breaks in the quiescent mouse Swiss 3T6 cell culture as compared to the proliferating one. The low efficiency of repair of single-strand DNA breaks in quiescent cells may result from a nearly complete absence of the fast repair of DNA lesions during the first minutes of postradiation incubation. The epidermal growth factor in combination with insulin (no other serum component present) leads to a recovery of the repair process. The stimulating effect of mitogens on the repair of both single- and double-strand DNA breaks allows to suggest that similar factors may be responsible for these recovery processes.  相似文献   

12.
Strains of Escherichia coli K-12 mutant in the genes controlling excision repair (uvr) and genetic recombination (rec) have been studied with reference to their radiosensitivity and their ability to repair X-ray-induced single-strand breaks in deoxyribonucleic acid (DNA). Mutations in the rec genes appreciably increase the radiosensitivity of E. coli K-12, whereas uvr mutations produce little if any increase in radiosensitivity. For a given dose of X-rays, the yield of single-strand breaks has been shown by alkaline sucrose gradient studies to be largely independent of the presence of rec or uvr mutations. The rec(+) cells (including those carrying the uvrB5 mutation) could efficiently rejoin X-ray-induced single-strand breaks in DNA, whereas recA56 mutants could not repair these breaks to any great extent. The recB21 and recC22 mutants showed some indication of repair capacity. From these studies, it is concluded that a correlation exists between the inability to repair single-strand breaks and the radiosensitivity of the rec mutants of E. coli K-12. This suggests that unrepaired single-strand breaks may be lethal lesions in E. coli.  相似文献   

13.
Escherichia coli C cells, unifilarly substituted with 5-bromouracil (BrUra) were 2-25 times as sensitive as unsubstituted cells to killing by gamma-irradiation under aerobic conditions. The yield of DNA double-strand breaks in BrUra-substituted cells was increased by a factor only 1-55, suggesting that other lesions also contribute to cell-killing. Alkaline sucrose density gradient analysis of the 3H-thymine labelled DNA strand showed there was less repair of gamma-ray-induced single-strand breaks when BrUra was in the complementary strand. Since there are more of these unrepaired breaks than can be accounted for by BrUra-induced DNA double-strand breakage, some fraction of the lethal events in BrUra-substituted E. coli cells may be unrepaired DNA single-strand breaks.  相似文献   

14.
beta-Mercaptoethylamine (MEA) decreased the accumulation of enzymatic single- and double-strand breaks in DNA of thermophilic bacteria exposed to gamma- and UV-radiation and treated with N-nitroso-N-methylurea. The protective effect of MEA, as registered according to accumulation of single-strand and double-strand breaks in DNA of Bac. stearothermophilus immediately after irradiation and after 30 min postirradiation incubation, was similar.  相似文献   

15.
Normal DNA ligase activity in a gamma-ray-sensitive Chinese hamster mutant   总被引:1,自引:0,他引:1  
A Chinese hamster cell mutant (XR-1) was previously described that is extremely deficient in the repair of double-strand DNA breaks produced by gamma-irradiation during the sensitive G1--early-S period and somewhat deficient in repair of gamma-ray-induced single-strand DNA breaks. To determine whether a deficiency in DNA ligase activity might underlie the biochemical defect, protein extracts from mutant and parental cells were examined for their ability to ligate single- and double-strand breaks in DNA. The kinetics of ligation of single 5'-phosphate-3'-hydroxyl breaks in double-stranded DNA were the same in protein extracts from both cells. After separation of protein extracts by gel-filtration chromatography, the percentage of activity in the large and small molecular forms of DNA ligase was also similar in the two cells. Finally, protein extracts prepared from exponentially growing or G1-synchronized mutant and parental cells were equal in their ability to ligate blunt-end DNA substrates. These data suggest that a deficiency in DNA ligase is not the cause of the repair defect in the XR-1 mutant cell.  相似文献   

16.
To elucidate the mechanism of the cell killing activity of neocarzinostatin on mammalian cells, the drug-induced damage of DNA and its repair were examined. Very low doses of neocarzinostatin, at which high survival of cells was observed, clearly produced single-strand breaks of DNA and decomposition of the 'DNA complex', but these damages appeared to be repaired almost completely. At higher doses of neocarzinostatin, single-strand breaks were repaired to a considerable extent while double-strand breaks seemed not to be repaired. The number of non-repairable single-strand breaks was about twice that of double-strand breaks. This implies that single-strand breaks are repaired except for those constituting double-strand breaks. Although at low levels of neocarzinostatin repair of double-strand breaks may occur, the correlation existing between the colony-forming ability of cells treated with neocarzinostatin and non-repairable DNA breakage suggests that production of a small number of critical non-repairable double-strand breaks per cell may be responsible for the cell killing activity of the drug.  相似文献   

17.
A Chinese hamster cell mutant (XR-1) was previously described that is extremely deficient in the repair of double-strand DNA breaks produced by γ-irradiation during the sensitive G1-early-S period and somewhat deficient in repair of γ-ray-induced single-strand DNA breaks. To determine whether a deficiency in DNA ligase activity might underlie the biochemical defect, protein extracts from mutant and parental cells were examined for their ability to ligate single- and double-strand breaks in DNA. The kinetics of ligation of single 5′-phosphate-3′-hydroxyl breaks in double stranded DNA were the same in protein extracts from both cells. After separation of protein extracts by gel-filtration chromatography, the percentage of activity in the large and small molecular forms of DNA ligase was also similar in the two cells. Finally, protein extracts prepared from exponentially growing or G1-synchronized mutant and parental cells were equal in their ability to ligate blunt-end DNA substrates. These data suggest that a deficiency in DNA ligase is not the cause of the repair defect in the XR-1 mutant cell.  相似文献   

18.
The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid (DNA; K. M. Ulmer et al., J. Bacteriol. 138:475-485, 1979) yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stages of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497.  相似文献   

19.
It is confirmed that inhibitors of DNA repair caffeine and 3-aminobenzamide decrease the survival of gamma-irradiated HeLa cells. It is shown that the decreased survival of irradiated cells is reversed when Escherichia coli RecA protein is introduced into cell nucleases with the aid of liposomes. This effect is more expressed in caffeine-treated (before or after irradiation) than in 3-aminobenzamide-treated (before irradiation) cells. It is suggested that E. coli 38 kD RecA protein may compensate the function of HeLa RecA-like protein, inhibited by DNA repair inhibitors, which is necessary for the repair of single-strand breaks and double-strand breaks of DNA.  相似文献   

20.
The repair of X-ray-induced DNA lesions in repair-deficient mutant strains was studied as a way of investigating the mechanism of the induction of genetic damage. Genetic effects on the recovery of X-ray-induced damage by the repair-deficient strains ebony (photoreactivation repair-deficient) and mus(1)101D1 (post-replication repair-deficient) were interpreted as impaired repair of single- and double-strand DNA breaks. We investigated the repair of X-ray-induced DNA breaks and alkaline-labile sites in primary cell cultures of ebony and mus(1)101D1 and in cultures of their control strains. No significant differences were found between the repair rates in the mutants and control strains. This indicates that the genetic effects of these mutants are not due to an impaired rate of repair of DNA breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号