首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Substrate specificity of Escherichia coli thymidine phosphorylase to thymidine derivatives modified at 5' -, 3' -, and 2' ,3' - positions of the sugar moiety was studied. Equilibrium and kinetic constants (K(m), K(I), k(cat)) of the phosphorolysis reaction have been determined for 20 thymidine analogs. The results are compared with X-ray and molecular dynamics data. The most important hydrogen bonds in the enzyme-substrate complex are revealed.  相似文献   

2.
Uridine phosphorylase (UPP) catalyzes the reversible conversion of uridine to uracil and ribose-1-phosphate and plays an important pharmacological role in activating fluoropyrimidine nucleoside chemotherapeutic agents such as 5-fluorouracil and capecitabine. Most vertebrate animals, including humans, possess two homologs of this enzyme (UPP1 & UPP2), of which UPP1 has been more thoroughly studied and is better characterized. Here, we report two crystallographic structures of human UPP2 (hUPP2) in distinctly active and inactive conformations. These structures reveal that a conditional intramolecular disulfide bridge can form within the protein that dislocates a critical phosphate-coordinating arginine residue (R100) away from the active site, disabling the enzyme. In vitro activity measurements on both recombinant hUPP2 and native mouse UPP2 confirm the redox sensitivity of this enzyme, in contrast to UPP1. Sequence analysis shows that this feature is conserved among UPP2 homologs and lacking in all UPP1 proteins due to the absence of a necessary cysteine residue. The state of the disulfide bridge has further structural consequences for one face of the enzyme that suggest UPP2 may have additional functions in sensing and initiating cellular responses to oxidative stress. The molecular details surrounding these dynamic aspects of hUPP2 structure and regulation provide new insights as to how novel inhibitors of this protein may be developed with improved specificity and affinity. As uridine is emerging as a promising protective compound in neuro-degenerative diseases, including Alzheimer’s and Parkinson’s, understanding the regulatory mechanisms underlying UPP control of uridine concentration is key to improving clinical outcomes in these illnesses.  相似文献   

3.
Twenty five uridine analogues have been tested and compared with uridine with respect to their potency to bind to E. coli uridine phosphorylase. The kinetic constants of the phosphorolysis reaction of uridine derivatives modified at 2′-, 3′- and 5′-positions of the sugar moiety and 2-, 4-, 5- and 6-positions of the heterocyclic base were determined. The absence of the 2′- or 5′-hydroxyl group is not crucial for the successful binding and phosphorolysis. On the other hand, the absence of both the 2′- and 5′-hydroxyl groups leads to the loss of substrate binding to the enzyme. The same effect was observed when the 3′-hydroxyl group is absent, thus underlining the key role of this group. Our data shed some light on the mechanism of ribo- and 2′-deoxyribonucleoside discrimination by E. coli uridine phosphorylase and E. coli thymidine phosphorylase. A comparison of the kinetic results obtained in the present study with the available X-ray structures and analysis of hydrogen bonding in the enzyme-substrate complex demonstrates that uridine adopts an unusual high-syn conformation in the active site of uridine phosphorylase.  相似文献   

4.
The bacterial enzyme maltodextrin phosphorylase (MalP) catalyses the phosphorolysis of an alpha-1,4-glycosidic bond in maltodextrins, removing the non-reducing glucosyl residues of linear oligosaccharides as glucose-1-phosphate (Glc1P). In contrast to the well-studied muscle glycogen phosphorylase (GP), MalP exhibits no allosteric properties and has a higher affinity for linear oligosaccharides than GP. We have used MalP as a model system to study catalysis in the crystal in the direction of maltodextrin synthesis. The 2.0A crystal structure of the MalP/Glc1P binary complex shows that the Glc1P substrate adopts a conformation seen previously with both inactive and active forms of mammalian GP, with the phosphate group not in close contact with the 5'-phosphate group of the essential pyridoxal phosphate (PLP) cofactor. In the active MalP enzyme, the residue Arg569 stabilizes the negative-charged Glc1P, whereas in the inactive form of GP this key residue is held away from the catalytic site by loop 280s and an allosteric transition of the mammalian enzyme is required for activation. The comparison between MalP structures shows that His377, through a hydrogen bond with the 6-hydroxyl group of Glc1P substrate, triggers a conformational change of the 380s loop. This mobile region folds over the catalytic site and contributes to the specific recognition of the oligosaccharide and to the synergism between substrates in promoting the formation of the MalP ternary complex. The structures solved after the diffusion of oligosaccharides (either maltotetraose, G4 or maltopentaose, G5) into MalP/Glc1P crystals show the formation of phosphate and elongation of the oligosaccharide chain. These structures, refined at 1.8A and at 2.2A, confirm that only when an oligosaccharide is bound to the catalytic site will Glc1P bend its phosphate group down so it can contact the PLP 5' phosphate group and promote catalysis. The relatively large oligosaccharide substrates can diffuse quickly into the MalP/Glc1P crystals and the enzymatic reaction can occur without significant crystal damage. These structures obtained before and after catalysis have been used as frames of a molecular movie. This movie reveals the relative positions of substrates in the catalytic channel and shows a minimal movement of the protein, involving mainly Arg569, which tracks the substrate phosphate group.  相似文献   

5.
Various stages of pegs, cotyledons and embryonic axes from maturing peanut fruits were examined for their ability to phosphorylate thymidine and uridine. Highest specific activities during peg elongation were found just prior to increases in endosperm nuclei and embryo cell numbers. In the developing cotyledons and axes, the net kinase activities of crude extracts reached a maximum 1–2 weeks before maximal RNA and DNA contents were attained. An exception was the apparent lack of any relationship between uridine kinase activities and RNA levels in developing embryonic axes. The present results support the observation that peanut axes are devoid of thymidine and uridine kinases during the first 24 hr of germination, as fully developed fruits had very low specific activities for both of these phosphate transferases.  相似文献   

6.
7.
Summary The incorporation and uptake of (3H) thymidine into HeLa cells markedly decreased in the presence of nuclear homogenates and DNA extracts that have been derived from normal diploid cell cultures. On the other hand, uridine uptake and incorporation were stimulated under the same conditions. The inhibition could be reversed immediately upon removal of the exogenous fraction from the culture medium. The inhibitory properties of the extracts are propagated by excreted cellular components as well as after DNAase treatment. The inhibitory factor is thermostable, resistant to pronase treatment, and seems to be related to nucleic acid. The material herein represents part of a dissertation presented by the senior author in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Tel Aviv University, Israel. This work was partially supported by a grant from the Israel Ministry of Health.  相似文献   

8.
Inhibition of Thymidine phosphorylase (TP) is continuously studied for the design and development of new drugs for the treatment of neoplastic diseases. As a part of our effort to identify TP inhibitors, we performed a structure-based virtual screening (SBVS) of our compound collection. Based on the insights gained from structures of virtual screening hits, a scaffold was designed using 1,3,4-oxadiazole as the basic structural feature and SAR studies were carried out for the optimization of this scaffold. Twenty-five novel bis-indole linked 1,3,4-oxadiazoles (731) were designed, synthesized and tested in vitro against E. coli TP (EcTP). Compound 7 emerged as potent TP inhibitor with an IC50 value of 3.50?±?0.01?μM. Docking studies were carried out using GOLD software on thymidine phosphorylase from human (hTP) and E. coli (EcTP). Various hydrogen bonding, hydrophobic interactions, and π-π stacking were observed between designed molecules and the active site amino acid residues of the studied enzymes.  相似文献   

9.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease due to ECGF1 gene mutations causing thymidine phosphorylase (TP) deficiency. Analysis of post-mortem samples of five MNGIE patients and two controls, revealed TP activity in all control tissues, but not in MNGIE samples. Converse to TP activity, thymidine and deoxyuridine were absent in control samples, but present in all tissues of MNGIE patients. Concentrations of both nucleosides in the tissues were generally higher than those observed in plasma of MNGIE patients. Our observations indicate that in the absence of TP activity, tissues accumulate nucleosides, which are excreted into plasma.  相似文献   

10.
Summary Angiogenesis is essential for development, growth and advancement of solid tumors. Cyclooxygenase (COX)-2 is recognized as an angiogenic factor in various tumors. This prompted us to study the clinical implications of COX-2 expression related to angiogenesis in uterine cervical cancers. There was a significant correlation between microvessel counts and COX-2 levels in uterine cervical cancers. COX-2 localized in the cancer cells, but not in the stromal cells of uterine cervical cancer tissues. COX-2 levels increased with advancement, and the prognosis of the 30 patients with high COX-2 expression in uterine cervical cancers was poor (60%), while the 24-month survival rate of the other 30 patients with low COX-2 expression was 90%. Furthermore, COX-2 levels significantly correlated with VEGF levels in uterine cervical cancers. VEGF associated with COX-2 might work on angiogenesis in advancement. Therefore, long-term administration of COX-2 inhibitors might be effective on the suppression of regrowth or recurrence after intensive treatment for advanced uterine cervical cancers.  相似文献   

11.
Abstract: Lactobacillus casei cells grown on excess thymine or on folic acid contained low levels of thymidine phosphorylase. On the other hand, thymine starved cells and also cells of a thymidine-monophosphate-kinase-defective mutant grown on excess thymine, possessed derepressed levels. These results suggest that the synthesis of thymidine phosphorylase is regulated by the end product of the thymidine-triphosphate-biosynthetic pathway. L. casei cells lacked 2-deoxyribose-1-phosphate-mutase activity and did not grow on 2-deoxyribose or thymidine as the sole-carbon source. Growth in the presence of thymidine did not result in induction of thymidine-phosphorylase synthesis, probably due to the inability of the cell to convert it to 2-deoxyribose-5-phosphate, which is known to act as an inducer in E. coli cells. Thymidine triphosphate inhibited non-competitively the activity of thymidine phosphorylase. It was also inhibited by dihydrofolic acid.  相似文献   

12.
目的研究大肠癌原发灶和相应淋巴结转移灶中胸苷磷酸化酶(thymidine phosphorylase,TP)及血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)的表达及与5-氟尿嘧啶(5-fluorouracil, 5-FU)化疗敏感性的关系。方法收集2010年1月至2012年3月间上海交通大学医学院附属新华医院崇明分院诊治的有淋巴结转移的大肠腺癌患者;通过免疫组织化学方法,检测VEGF和TP在大肠癌原发灶和相应淋巴结转移灶中的表达,共观察33例。结果大肠癌原发灶中癌细胞TP及VEGF的阳性表达率与相应淋巴结转移灶中的表达无显著差异;7例预后较好的病例中,原发灶中间质细胞TP表达明显,淋巴结转移灶中癌细胞VEGF不表达。结论大肠癌原发灶和相应淋巴结转移灶之间癌细胞的TP、VEGF表达水平无显著差异;对于有淋巴结转移的大肠癌,癌细胞TP表达水平不能预测而间质细胞及炎症细胞的TP表达水平可能预测癌对以5-FU为基础的化疗反应。  相似文献   

13.
Uridine phosphorylase (UP) is a key enzyme in the pyrimidine salvage pathway that catalyses the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. Inhibiting liver UP in humans raises blood uridine levels and produces a protective effect ("uridine rescue") against the toxicity of the chemotherapeutic agent 5-fluorouracil without reducing its antitumour activity. We have investigated UP-substrate interactions by determining the crystal structures of native Escherichia coli UP (two forms), and complexes with 5-fluorouracil/ribose 1-phosphate, 2-deoxyuridine/phosphate and thymidine/phosphate. These hexameric structures confirm the overall structural similarity of UP to E.coli purine nucleoside phosphorylase (PNP) whereby, in the presence of substrate, each displays a closed conformation resulting from a concerted movement that closes the active site cleft. However, in contrast to PNP where helix segmentation is the major conformational change between the open and closed forms, in UP more extensive changes are observed. In particular a swinging movement of a flap region consisting of residues 224-234 seals the active site. This overall change in conformation results in compression of the active site cleft. Gln166 and Arg168, part of an inserted segment not seen in PNP, are key residues in the uracil binding pocket and together with a tightly bound water molecule are seen to be involved in the substrate specificity of UP. Enzyme activity shows a twofold dependence on potassium ion concentration. The presence of a potassium ion at the monomer/monomer interface induces some local rearrangement, which results in dimer stabilisation. The conservation of key residues and interactions with substrate in the phosphate and ribose binding pockets suggest that ribooxocarbenium ion formation during catalysis of UP may be similar to that proposed for E.coli PNP.  相似文献   

14.
An improved procedure for the synthesis of N-benzoyl-2',3'-O-isopropylidene uridine via one-step selective N-benzoylation of 2',3' -O-isopropylidene uridine has been developed. An efficient synthetic route to N-benzoyl thymidine via initial tribenzoylation, followed by selective hydrolysis of the benzoates is also described. De-N-benzoylation of N-benzoylated thymidine and uridine derivatives can be conveniently effected under neutral conditions, by heating with benzyl alcohol.  相似文献   

15.
6-甲基嘌呤-2'-脱氧核苷(MePdR)是一种新型抗癌药物,它作为药物前体应用于PNP自杀基因治疗系统可以选择性杀伤肿瘤细胞.本实验构建了一个高效表达大肠杆菌来源的嘌呤核苷磷酸化酶重组质粒,并利用基因工程菌以15mmol/L 6-甲基嘌呤和60mmol/L 2'-脱氧尿苷为底物合成6-甲基嘌呤-2'-脱氧核苷,在40mmol/L pH7.0的磷酸缓冲液中,2%菌体在55℃反应2h,转化率可达83.78%.用硅胶制备薄层提纯得到白色针状晶体,收率为76.4%.HPLC测定该产物纯度99.3%,核磁共振鉴定该产物为MePdR.  相似文献   

16.
6-甲基嘌呤-2′-脱氧核苷(MePdR)是一种新型抗癌药物,它作为药物前体应用于PNP自杀基因治疗系统可以选择性杀伤肿瘤细胞。本实验构建了一个高效表达大肠杆菌来源的嘌呤核苷磷酸化酶重组质粒,并利用基因工程菌以15mmol/L 6-甲基嘌呤和60mmol/L 2′-脱氧尿苷为底物合成6-甲基嘌呤-2′-脱氧核苷,在40mmol/L pH7.0的磷酸缓冲液中,2%菌体在55℃反应2h,转化率可达83.78%。用硅胶制备薄层提纯得到白色针状晶体,收率为76.4%。HPLC测定该产物纯度99.3%,核磁共振鉴定该产物为MePdR。  相似文献   

17.
Thymidine phosphorylase (TP) is over expressed in several solid tumors and its inhibition can offer unique target suitable for drug discovery in cancer. A series of 1,2,4-triazoles 3a–3l has been synthesized in good yields and subsequently inhibitory potential of synthesized triazoles 3a–3l against thymidine phosphorylase enzyme was evaluated. Out of these twelve analogs five analogues 3b, 3c, 3f, 3l and 3l exhibited a good inhibitory potential against thymidine phosphorylase. Inhibitory potential in term of IC50 values were found in the range of 61.98 ± 0.43 to 273.43 ± 0.96 μM and 7-Deazaxanthine was taken as a standard inhibitor with IC50 = 38.68 ± 4.42 μM. Encouraged by these results, more analogues 1,2,4-triazole-3-mercaptocarboxylic acids 4a–4g were synthesized and their inhibitory potential against thymidine phosphorylase was evaluated. In this series, six analogues 4b–4g exhibited a good inhibitory potential in the range of 43.86 ± 1.11–163.43 ± 2.03 μM. Angiogenic response of 1,2,4-triazole acid 4d was estimated using the chick chorionic allantoic membrane (CAM) assay. In the light of these findings, structure activity relationship and molecular docking studies of selected triazoles to determine the key binding interactions was discussed. Docking studies demonstrate that synthesized analogues interacted with active site residues of thymidine phosphorylase enzyme through π-π stacking, thiolate and hydrogen bonding interactions.  相似文献   

18.
Thymidine Pi deoxyribosyltransferase (TP) is an enzyme involved in DNA synthesis up-regulated in tumours and it is also a pro-angiogenic factor. TP cannot activate capecitabine, because capecitabine first needs conversion by carboxylesterase and cytidine deaminase into 5-deoxy-fluorouridine. This compound can be activated by TP to 5-fluorouracil (5-FU). Although TP is not necessary for 5-FU toxicity, experimental data suggest that high levels of TP correlate with an enhanced response to 5-FU therapy. In this study, we have analysed by immunohistochemistry CD34, CD68 and TP positive cells in bioptic samples from 53 patients with T(1-3) N(0-1) M(0) oropharyngeal squamous cell carcinoma (OSC) and from 24 patients with non-dysplastic oropharyngeal leukoplakia (NDOLP). Results showed that the mean of TP-positive cells, CD68 positive macrophages and CD34 positive endothelial cells eval-uated as microvessel density (MVD) was significantly higher in OSC than in NDOLP. Moreover, at a median follow-up of 19 months, patients with TP expression and higher MVD showed a better survival rate as compared to those with low MVD, probably as a consequence of 5-FU-based therapy.We hypothesized a role for TP in oropharyngeal tumourigenesis and 5-FU activation in the adjuvant setting of OSC patients.  相似文献   

19.
The new substrates 4-thiouridine and 4-thiothymidine were proposed for spectrophotometric measurement of the activity of uridine (UP) and thymidine (TP) phosphorylases. At pH 7.5, 4-thiouridine has an absorbance maximum at 330 nm, and the difference in extinction coefficient () between 4-thiouridine and 4-thiouracil is 3000 –1cm–1. 4-Thiouridine proved to be a good substrate for UP: the Michaelis ( ) and catalytic (k cat) constants were estimated respectively at 130 M and 49 s–1 at 25°C. Even a greater (5000 M–1cm–1 at 336 nm) was observed for the 4-thiothymidine/4-thiothymine pair.  相似文献   

20.
Homodimeric thymidine phosphorylase from Escherichia coli (TP, E.C. 2.4.2.4) was immobilized on solid support with the aim to have a stable and recyclable biocatalyst for nucleoside synthesis. Immobilization by ionic adsorption on amine-functionalized agarose and Sepabeads® resulted in a very high activity recovery (>85%). To prevent undesirable leakage of immobilized enzyme away from the support, the ionic preparations were cross-linked with aldehyde dextran (MW 20 kDa) and the influence of the dextran oxidation degree on the resulting biocatalyst activity was evaluated. Although in all cases the percentage of expressed activity after immobilization drastically decreased (≤25%), this procedure allowed to obtain an active catalyst which resulted up to 6-fold and 3-fold more stable than the soluble (non immobilized) enzyme and the just adsorbed (non cross-linked) counterpart, respectively, at pH 10 and 37 °C. No release of the enzyme from the support could be observed. Covalent immobilization on aldehyde or epoxy supports was generally detrimental for enzyme activity. Optimal TP preparation, achieved by immobilization onto Sepabeads® coated with polyethyleneimine and cross-linked, was successfully used for the one-pot synthesis of 5-fluoro-2′-deoxyuridine starting from 2′-deoxyuridine or thymidine (20 mM) and 5-fluorouracil (10 mM). In both cases, the reaction proceeded at the same rate (3 μmol min−1) affording 62% conversion in 1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号