首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence for horizontal gene transfer in Escherichia coli speciation.   总被引:13,自引:0,他引:13  
After extracting more than 780 identified Escherichia coli genes from available data libraries, we investigated the codon usage of the corresponding coding sequences and extended the study of gene classes, thus obtained, to the nature and intensity of short nucleotide sequence selection, related to constraints operating at the nucleotide level. Using Factorial Correspondence Analysis we found that three classes ought to be included in order to match all data now available. The first two classes, as known, encompass genes expressed either continuously at a high level, or at a low level and/or rarely; the third class consists of genes corresponding to surface elements of the cell, genes coming from mobile elements as well as genes resulting in a high fidelity of DNA replication. This suggests that bacterial strains cultivated in the laboratory have been fixed by specific use of antimutator genes that are horizontally exchanged.  相似文献   

2.
Bacteria exchange genetic material by horizontal gene transfer (HGT). To evaluate the impact of HGT on Escherichia coli genome plasticity, 19 commensal strains collected from the intestinal floras of humans and animals were analyzed by microarrays. Strains were hybridized against an oligoarray containing 2700 E. coli K12 chromosomal genes. A core (genes shared among compared genomes) and a flexible gene pool (genes unique for each genome) have been identified. Analysis of hybridization signals evidenced 1015 divergent genes among the 19 strains and each strain showed a specific genomic variability pattern. Four hundred and fifty-eight genes were characterized by higher rates of interstrain variation and were considered hyperdivergent. These genes are not randomly distributed onto the chromosome but are clustered in precise regions. Hyperdivergent genes belong to the flexible gene pool and show a specific GC content, differing from that of the chromosome, indicating acquisition by HGT. Among these genes, those involved in defense mechanisms and cell motility as well as intracellular trafficking and secretion were far more represented than others. The observed genome plasticity contributes to the maintenance of genetic diversity and may therefore be a source of evolutionary adaptation and survival.  相似文献   

3.
Different strains of Streptococcus suis serotypes 1 and 2 isolated from pigs either contained a restriction-modification (R-M) system or lacked it. The R-M system was an isoschizomer of Streptococcus pneumoniae DpnII, which recognizes nucleotide sequence 5′-GATC-3′. The nucleotide sequencing of the genes encoding the R-M system in S. suis DAT1, designated SsuDAT1I, showed that the SsuDAT1I gene region contained two methyltransferase genes, designated ssuMA and ssuMB, as does the DpnII system. The deduced amino acid sequences of M.SsuMA and M.SsuMB showed 70 and 90% identity to M.DpnII and M.DpnA, respectively. However, the SsuDAT1I system contained two isoschizomeric restriction endonuclease genes, designated ssuRA and ssuRB. The deduced amino acid sequence of R.SsuRA was 49% identical to that of R.DpnII, and R.SsuRB was 72% identical to R.LlaDCHI of Lactococcus lactis subsp. cremoris DCH-4. The four SsuDAT1I genes overlapped and were bounded by purine biosynthetic gene clusters in the following gene order: purF-purM-purN-purH-ssuMA-ssuMB-ssuRA-ssuRB-purD-purE. The G+C content of the SsuDAT1I gene region (34.1%) was lower than that of the pur region (48.9%), suggesting horizontal transfer of the SsuDAT1I system. No transposable element or long-repeat sequence was found in the flanking regions. The SsuDAT1I genes were functional by themselves, as they were individually expressed in Escherichia coli. Comparison of the sequences between strains with and without the R-M system showed that only the region from 53 bp upstream of ssuMA to 5 bp downstream of ssuRB was inserted in the intergenic sequence between purH and purD and that the insertion target site was not the recognition site of SsuDAT1I. No notable substitutions or insertions could be found, and the structures were conserved among all the strains. These results suggest that the SsuDAT1I system could have been integrated into the S. suis chromosome by an illegitimate recombination mechanism.  相似文献   

4.
We have recently shown that the process of non-enzymatic glycosylation (glycation) takes place in Escherichia coli under physiological conditions and affects both recombinant and endogenous bacterial proteins. In this study, we further demonstrate that E. coli chromosomal DNA is also subjected to glycation under physiological growth conditions. The E. coli DNA accumulates early glycation (Amadori) products as proven by the nitroblue tetrazolium (NBT) reduction assay. It showed also immunoreactivity to a monoclonal antibody raised against N(in)-(carboxymethyl)lysine and fluorescent properties indicative of modifications with advanced glycation end-products. Two types of fluorophores were detected in the E. coli DNA with excitation maxima at 360 nm and 380 nm and emission maxima at 440 nm and 410 nm. Using the NBT reduction assay, fluorescence spectroscopy and enzyme-linked immunosorbent assay we revealed that glycation adducts accumulate in DNA predominantly in the stationary phase of growth, although they could be detected also in exponential-phase cells. Besides on the growth phase, the extent of DNA glycation depends also on the nutrient broth composition being more extensive in rich media. Thiamine was found to inhibit both DNA glycation and spontaneous point mutations as judged by the decreased rate of the argE3 to Arg(+) reversions in the E. coli strain AB1157.  相似文献   

5.
6.
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3′→5′ exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5‐ to 4‐fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error‐producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.  相似文献   

7.
8.
9.
Phage P1 cannot lysogenize a lon- mutant of Escherichia coli K-12, which is defective in the regulation of cellular division cycle to result in snake formation (14). P1 mutants, called P1pla, can lysogenize the lon- host. These mutations have been classified into two complementation groups: one is cis-dominant; the other is trans-dominant. A temperature-sensitive lon- mutant was isolated, which exhibited the lon- phenotype at 42 C but not at 33 C. A temperature-shift experiment of the P1-lysogenic derivative of the lon- ts mutant showed lysis of the culture and induction of the phage production. It is proposed that P1 plasmid may be under a certain regulatory circuit of the division cycle of the host bacterium by indirectly regulating the production of P1 immune repressor, or alternatively by directly derepressing the functions of P1 prophage.  相似文献   

10.
mutS mutators accelerate the bacterial mutation rate 100- to 1,000-fold and relax the barriers that normally restrict homeologous recombination. These mutators thus afford the opportunity for horizontal exchange of DNA between disparate strains. While much is known regarding the mutS phenotype, the evolutionary structure of the mutS(+) gene in Escherichia coli remains unclear. The physical proximity of mutS to an adjacent polymorphic region of the chromosome suggests that this gene itself may be subject to horizontal transfer and recombination events. To test this notion, a phylogenetic approach was employed that compared gene phylogeny to strain phylogeny, making it possible to identify E. coli strains in which mutS alleles have recombined. Comparison of mutS phylogeny against predicted E. coli "whole-chromosome" phylogenies (derived from multilocus enzyme electrophoresis and mdh sequences) revealed striking levels of phylogenetic discordance among mutS alleles and their respective strains. We interpret these incongruences as signatures of horizontal exchange among mutS alleles. Examination of additional sites surrounding mutS also revealed incongruous distributions compared to E. coli strain phylogeny. This suggests that other regional sequences are equally subject to horizontal transfer, supporting the hypothesis that the 61.5-min mutS-rpoS region is a recombinational hot spot within the E. coli chromosome. Furthermore, these data are consistent with a mechanism for stabilizing adaptive changes promoted by mutS mutators through rescue of defective mutS alleles with wild-type sequences.  相似文献   

11.
AIMS: The transfer of tetO gene conferring resistance to tetracycline was studied between Campylobacter jejuni strains, in the digestive tract of chickens. METHODS AND RESULTS: In vitro conjugation experiments were first performed in order to select donor/recipient couples for further in vivo assay. Then, chickens were inoculated with a donor/recipient couple of C. jejuni strains displaying spontaneous in vitro tetracycline resistance gene transfer. The donor was a tetracycline-resistant ampicillin-susceptible strain, and the recipient was a tetracycline-susceptible ampicillin-resistant strain. Chicken droppings were streaked on antimicrobial selective media and bi-resistant Campylobacter isolates were further characterized according to their donor or recipient flaA gene RFLP profile. The acquisition of tetracycline-resistance gene by the recipient C. jejuni strain from the donor C. jejuni strain was confirmed by tetO PCR. CONCLUSIONS: The study showed that transfer of tetO gene occurs rapidly and without antimicrobial selection pressure between C. jejuni strains in the digestive tract of chickens. SIGNIFICANCE AND IMPACT OF THE STUDY: The rapid and spontaneous transfer of tetO gene may explain the high prevalence of tetracycline resistance in chicken Campylobacter strains.  相似文献   

12.
13.
14.
15.
Quercetin powerfully inhibits malate dehydrogenase reversibly and cooperatively with 50% inhibition at 2.5μM at pH 7.50. Irradiation with light of wavelengths ?350nm, of a mixture of malate dehydrogenase and quercetin leads to covalent inhibition whose extent is directly related to quercetin concentration, inversely related to enzyme concentration, and partially protected against by NADH. Prephotolysis of quercetin followed by incubation (in the dark) with malate dehydrogenase led to a time-dependent covalent inhibition.  相似文献   

16.
Proteobacterium Escherichia coli strains harboring wide-transfer-range conjugative plasmids are able to transfer these plasmids to several yeast species. Whole plasmid DNA is mobilizable in the transkingdom conjugation phenomenon. Owing to the availability of various conjugative plasmids in bacteria, the horizontal DNA transfer has potential to occur between various bacteria and eukaryotes. In order to know host factor genes involved in such conjugation, we systematically tested the conjugability of strains among a yeast library comprising single-gene-knockout mutants in this study. This genome-wide screen identified 26 host chromosomal genes whose absence reduced the efficiency of the transkingdom conjugation. Among the 26 genes, 20 are responsible for vacuolar ATPase activity, while 5 genes (SHP1, CSG2, CCR4, NOT5, and HOF1) seem to play a role in maintaining the cell surface. Lack of either ZUO1 gene or SSZ1 gene, each of which encodes a component of the ribosome-associated cytoplasmic molecular chaperone, also strongly affected transkingdom conjugation.  相似文献   

17.
18.
We characterized three mutant DnaA proteins with an amino acid substitution of R334H, R342H and E361G that renders chromosomal replication cold (20 degrees C) sensitive. Each mutant DnaA protein was highly purified from overproducers, and replication activities were assayed in in vitro oriC replication systems. At 30 degrees C, all three mutant proteins exhibited specific activity similar to that seen with the wild-type protein, whereas at 20 degrees C, there was much less activity in a replication system using a crude replicative extract. Regarding the affinity for ATP, the dissociation rate of bound ATP and binding to oriC DNA, the three mutant DnaA proteins showed a capacity indistinguishable from that of the wild-type DnaA protein. Activity for oriC DNA unwinding of the two mutant DnaA proteins, R334H and R342H, was more sensitive to low temperature than that of the wild-type DnaA protein. We propose that R334H and R342H have a defect in their potential to unwind oriC DNA at low temperatures, the result being the cold-sensitive phenotype in oriC DNA replication. The two amino acid residues of DnaA protein, located in a motif homologous to that of NtrC protein, may play a role in the formation of the open complex. The E361 residue may be related to interaction with another protein present in a crude cell extract.  相似文献   

19.
20.
We report that the SOS response is induced in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of the complementary (minus)-strand synthesis. One such mutant, R377, which lacks the entire region of the minus-strand origin, failed to synthesize any detectable amount of primer RNA for minus-strand synthesis. In addition, the rate of conversion of parental single-stranded DNA of the mutant to the double-stranded replicative form in infected cells was extremely slow. Upon infection, R377 induced the SOS response in the cell, whereas the wild-type phage did not. The SOS induction was monitored by (i) induction of beta-galactosidase in a strain carrying a dinD::lacZ fusion and (ii) increased levels of RecA protein. In addition, cells infected with R377 formed filaments. Another deletion mutant of the minus-strand origin, M13 delta E101 (M. H. Kim, J. C. Hines, and D. S. Ray, Proc. Natl. Acad. Sci. USA 78:6784-6788, 1981), also induced the SOS response in E. coli. M13Gori101 (D. S. Ray, J. C. Hines, M. H. Kim, R. Imber, and N. Nomura, Gene 18:231-238, 1982), which is a derivative of M13 delta E101 carrying the primase-dependent minus-strand origin of phage G4, did not induce the SOS response. These observations indicate that single-stranded DNA by itself induces the SOS response in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号