首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
Immobilization is a key technology for successful realization of enzyme‐based industrial processes, particularly for production of green and sustainable energy or chemicals from biomass‐derived catalytic conversion. Different methods to immobilize enzymes are critically reviewed. In principle, enzymes are immobilized via three major routes (i) binding to a support, (ii) encapsulation or entrapment, or (iii) cross‐linking (carrier free). As a result, immobilizing enzymes on certain supports can enhance storage and operational stability. In addition, recent breakthroughs in nano and hybrid technology have made various materials more affordable hosts for enzyme immobilization. This review discusses different approaches to improve enzyme stability in various materials such as nanoparticles, nanofibers, mesoporous materials, sol–gel silica, and alginate‐based microspheres. The advantages of stabilized enzyme systems are from its simple separation and ease recovery for reuse, while maintaining activity and selectivity. This review also considers the latest studies conducted on different enzymes immobilized on various support materials with immense potential for biosensor, antibiotic production, food industry, biodiesel production, and bioremediation, because stabilized enzyme systems are expected to be environmental friendly, inexpensive, and easy to use for enzyme‐based industrial applications.  相似文献   

2.
Developments in industrially important thermostable enzymes: a review   总被引:41,自引:0,他引:41  
Cellular components of thermophilic organisms (enzymes, proteins and nucleic acids) are also thermostable. Apart from high temperature they are also known to withstand denaturants of extremely acidic and alkaline conditions. Thermostable enzymes are highly specific and thus have considerable potential for many industrial applications. The use of such enzymes in maximising reactions accomplished in the food and paper industry, detergents, drugs, toxic wastes removal and drilling for oil is being studied extensively. The enzymes can be produced from the thermophiles through either optimised fermentation of the microorganisms or cloning of fast-growing mesophiles by recombinant DNA technology. In this review, the source microorganisms and properties of thermostable starch hydrolysing amylases, xylanases, cellulases, chitinases, proteases, lipases and DNA polymerases are discussed. The industrial needs for such specific thermostable enzyme and improvements required to maximize their application in the future are also suggested.  相似文献   

3.
半乳甘露聚糖胶酶法改性研究进展   总被引:2,自引:0,他引:2  
由于半乳甘露聚糖的水溶液在低浓度下仍具高黏性以及它的凝胶性质,因此在工业上具有很多重要的应用。半乳甘露聚糖聚糖的酶法改性主要包括脱去支链和切断主链两种方式。相对于化学改性来说,酶法改性具有易控制、反应条件温和等很多优点,因此成为改变半乳甘露聚糖分子结构以获得所需特性的最具潜力的改性方法。α-半乳糖苷酶和 β-甘露聚糖酶是半乳甘露聚糖改性和水解中最常用的酶。简要介绍了有关这两种酶的来源和新型制备菌株的近期研究概况。在医药和食品等工业中,酶法改性后的半乳甘露聚糖具有很广阔的应用前景。  相似文献   

4.
The ideal enzyme support should show high affinity to proteins, availability of reactive groups for direct reactions with proteins or for chemical modifications, easiness of preparing in different physical forms, nontoxicity and physiological compatability if required (food industry, biomedicine), as well as low cost. Chitin and its derivatives fullfil most of these requirements. The paper reviews enzymes immobilized on chitin and its derivatives along with techniques applied for their immobilization.  相似文献   

5.
Der Einfluß von Elektrolyten auf Chloroplasten beim Gefrieren und Trocknen   总被引:1,自引:1,他引:0  
Summary The effect of freezing, desiccation and various electrolytes on photophosphorylation, electron transport and some enzyme reactions of isolated spinach chloroplasts has been investigated. Freezing of broken chloroplasts took place at-25°C for 3 hrs; desiccation was performed at +2°C in vacuo over CaCl2 for 3 hrs. The influence of various electrolytes during freezing or drying or during incubation of thylakoids or stroma enzymes for 3 hrs at +2°C in electrolyte solutions was determined. After treatment, the activities of a number of enzymes and enzyme systems were measured under normal conditions, e. g. in the absence of elevated electrolyte levels in a reaction medium which contained only the substrates and cofactors which are necessary for the respective enzyme reactions.Only photophosphorylation and electron transport were affected by freezing, desiccation and high concentrations of electrolytes; various soluble enzymes investigated here were not inactivated under the same conditions. In general, mild dehydration and lower concentrations of electrolytes resulted in an irreversible inactivation of ATP synthesis but did not impair ferricyanide reduction. With increasing dehydration or at higher concentrations of electrolytes the Hill reaction was also inhibited. In a certain range of dehydration and electrolyte concentration uncoupling of photophosphorylation from electron transport took place. Sugar protects the sensitive structures against the deleterious effect of both dehydration and high concentration of electrolytes.Various electrolytes affected thylakoid membranes differently. Inactivation of the membranes increased with increasing ion radius and decreasing hydration envelope of univalent or divalent cations. Divalent cations were more destructive than univalent cations. Anions did not follow these rules. Within a group of similar anions (halides or organic anions) effectivity decreased with increasing hydration envelope. On a molar basis, polyvalent anions were less effective than univalent anions. Inactivation by anions followed Hofmeister's series in seversed order. However, exceptions were observed and it appears that various ions affect the membrane in a specific manner.Inactivation of photophosphorylation and electron transport due to freezing or desiccation is identical to that due to high concentrations of electrolytes. This suggests that during dehydration due to freezing or drying the concentration of electrolytes in the remaining solution is responsible for the inactivation of the sensitive membranes.  相似文献   

6.
Microbial enzymes are widely used in food processing: many new enzymes and enzyme processes acting on nearly all types of organic food components — starch, sugars, proteins, fats, fibers, and flavour compounds — have come into the industry during the 1980s and their application has a major impact on enzyme technology in general. The particular roles of immobilized enzymes and genetic engineering in food enzymology are briefly discussed.  相似文献   

7.
Enzymes do not have long-term storage stability in soluble forms, thus drying methods could minimize the loss of enzymatic activity, the spray dryer removes water under high temperatures and little time. The aims of this study were to improve the stability of enzymatic extract from Myceliophthora thermophila for potential applications in industry and to evaluate the best conditions to remove the water by spray drying technique. The parameters were tested according to Box–Behnken and evaluated by analysis of variance (ANOVA), all the parameters measured were found to influence the final enzyme activity and spray drying process yield ranged from 38.65 to 63.75%. Enzyme powders showed increased storage stability than extract and maintained about 100% of collagenolytic activity after 180 days of storage at 30°C. The results showed that the microbial enzymes maintained activity during the spray drying process and were stable during long-term storage; these are promising characteristics for industrial applications.  相似文献   

8.
Prostaglandins (PGs) are the oxidation products of PG endoperoxide (PGH) synthase and other tissue enzymes. They occur in a tissue-specific manner and act as local hormones. Biotechnological production of PGs has been of interest, but not yet fully established. Biological tissues have been used as PG sources, but this disturbs ecological balance, and the cost of production is very high for commercial purposes. On the other hand, various microorganisms have been shown to synthesize them de novo, or biotransform precursors to active molecules, but these processes have not been further evaluated. Using mammalian enzymes in free or immobilized form is a promising new approach to synthesize PG from fatty acid substrates. Rapid enzyme inactivation during the catalysis is the main problem to be solved. Optimization of factors in the reactions and the design of special reactors that will allow removal of products continuously from the reaction medium without affecting enzyme activity need immediate attention from researchers and the pharmaceutical industry.  相似文献   

9.
How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, we measure enzyme multispecificity or promiscuity using the reaction molecular signatures. Our main finding is that reactions that are catalyzed by a highly specific enzyme are shared by poorly divergent species, suggesting a later emergence of this function during evolution. In contrast, reactions that are catalyzed by highly promiscuous enzymes are more likely to appear uniformly distributed across species in the tree of life. From a functional point of view, promiscuous enzymes are mainly involved in amino acid and lipid metabolisms, which might be associated with the earliest form of biochemical reactions. In this way, results presented in this paper might assist us with the identification of primeval promiscuous catalytic functions contributing to life's minimal metabolism.  相似文献   

10.
There are four main sources of enzymes in foods—these being the inherent enzymes, enzymes from microbial contaminants, enzymes elaborated by microorganisms added to foods, and specific enzymes added to foods. This study primarily deals with the latter two sources of enzymes in food. Although both plants and animals serve as sources of enzymes, they are not as economical or versatile sources as are enzymes obtained from microorganisms. In the meat industry, proteases are used to tenderize muscle and to obtain flavor precursors. In the preparation of cured meat products such as sausages, lipases, and proteases from bacterial cultures are utilized. Similarly, proteases and lipases are used in the dairy industry to develop flavor compounds. Proteases and amylases also have applications in the baking and milling industries where they are used to produce precursors for the nonenzymatic browning reactions. Carbohydrases such as amylase, amyloglucosidase, and glucose isomerase have found usage in the starch and syrup industry for the production of high dextrose and high fructose syrups. Other enzymes such as glucose oxidase, pectinase, and naringinase are of value to the wine and fruit juice industries. A better understanding of the mode of action of enzymes as well as the mechanisms of development of flavor compounds will further enhance the use of microbial enzymes to develop specific and desired flavors in foods.  相似文献   

11.
A model was developed which describes simultaneous reaction and internal diffusion for kinetically controlled, immobilized α-chymotrypsin-catalyzed, oligopeptide synthesis in acetonitrile medium. The model combines the equations that describe the intrinsic kinetics of four different reactions and the physical characteristics of three different support materials, as determined experimentally, to predict the apparent initial activity and nucleophile selectivity of the immobilized biocatalyst. The model is able to predict reasonably well the experimentally observed initial rate and nucleophile selectivity vs. enzyme loading profiles. The reduction in observed initial rate with enzyme loading when fast reactions are carried out with α-chymotrypsin immobilized on celite, and the larger influence of mass transfer limitations on the initial reaction rates than on nucleophile selectivities are correctly predicted by the numerical calculations. The model is general in terms of its application to other systems — enzymes, reactions, support materials and/or kinetic schemes — as long as the intrinsic kinetics and the characteristics of the enzyme and support material are known.  相似文献   

12.
Cell wall lytic enzymes are valuable tools for the biotechnologist, with many applications in medicine, the food industry, and agriculture, and for recovering of intracellular products from yeast or bacteria. The diversity of potential applications has conducted to the development of lytic enzyme systems with specific characteristics, suitable for satisfying the requirements of each particular application. Since the first time the lytic enzyme of excellence, lysozyme, was discovered, many investigations have contributed to the understanding of the action mechanisms and other basic aspects of these interesting enzymes. Today, recombinant production and protein engineering have improved and expanded the area of potential applications. In this review, some of the recent advances in specific enzyme systems for bacteria and yeast cells rupture and other applications are examined. Emphasis is focused in biotechnological aspects of these enzymes.  相似文献   

13.
Biosensors are obtaining an increasing significance for analytical purposes as well as for on-line monitoring and control in biotechnological processes [1]. In the special field of food industry enzyme and microbial biosensors are suited. With enzyme sensors one can analyse in mostly high specific reactions many substances – microbial sensors normally are unspecific. But they have the advantage of high stability and there is no necessity of enzyme isolation and purification. On the basis of the manifold of microbial metabolic pathways one can expect a wider range of application for microbial sensors, much more as existent for enzyme sensors. This paper is dealing with a microbial aspartam sensor.  相似文献   

14.
Cytochrome P450s (CYPs) are a large family of heme-containing monooxygenase enzymes involved in the first-pass metabolism of drugs and foreign chemicals in the body. CYP reactions, therefore, are of high interest to the pharmaceutical industry, where lead compounds in drug development are screened for CYP activity. CYP reactions in vivo require the cofactor NADPH as the source of electrons and an additional enzyme, cytochrome P450 reductase (CPR), as the electron transfer partner; consequently, any laboratory or industrial use of CYPs is limited by the need to supply NADPH and CPR. However, immobilizing CYPs on an electrode can eliminate the need for NADPH and CPR provided the enzyme can accept electrons directly from the electrode. The immobilized CYP can then act as a biosensor for the detection of CYP activity with potential substrates, albeit only if the immobilized enzyme is electroactive. The quest to create electroactive CYPs has led to many different immobilization strategies encompassing different electrode materials and surface modifications. This review focuses on different immobilization strategies that have been used to create CYP biosensors, with particular emphasis on mammalian drug-metabolizing CYPs and characterization of CYP electrodes. Traditional immobilization methods such as adsorption to thin films or encapsulation in polymers and gels remain robust strategies for creating CYP biosensors; however, the incorporation of novel materials such as gold nanoparticles or quantum dots and the use of microfabrication are proving advantageous for the creation of highly sensitive and portable CYP biosensors.  相似文献   

15.
Glutaminase is widely distributed in microorganisms including bacteria, yeast and fungi. The enzyme mainly catalyzes the hydrolysis of γ-amido bond of -glutamine. In addition, some enzymes also catalyze γ-glutamyl transfer reaction. A highly savory amino acid, -glutamic acid and a taste-enhancing amino acid of infused green tea, theanine can be synthesized by employing hydrolytic or transfer reaction catalyzed by glutaminase. Therefore, glutaminase is one of the most important flavor-enhancing enzymes in food industries. In this review, subsequent to a discussion on the definition of glutaminase, the enzymatic properties, applications of glutaminase in the food industry, and occurrence and distribution of the enzyme are described. We then illustrate the gene cloning, primary structure, and 3D-structure of glutaminase. Finally, to facilitate the future applications of glutaminase in food fermentations, the mechanisms of action of salt-tolerant glutaminase are briefly discussed.  相似文献   

16.
嗜热和嗜碱木聚糖酶研究进展   总被引:1,自引:0,他引:1  
木聚糖酶是降解半纤维素主要成分木聚糖的关键酶,广泛应用在食品、饲料、制浆造纸、生物脱胶等行业。特别是在造纸工业中,木聚糖酶显示出巨大的应用潜力,已成为国内外研究的热点。纸浆漂白工艺中需要酶在高温碱性条件下发挥作用。目前,主要通过筛选野生型木聚糖酶资源和对现有中性中温木聚糖酶分子改造的方法获得嗜热碱木聚糖酶。文中就嗜热嗜碱木聚糖酶的筛选、嗜热嗜碱机制研究及分子改造进展进行了综述,并对其前景进行了展望。  相似文献   

17.
Enzyme-assisted extraction of bioactives from plants   总被引:2,自引:0,他引:2  
Demand for new and novel natural compounds has intensified the development of plant-derived compounds known as bioactives that either promote health or are toxic when ingested. Enhanced release of these bioactives from plant cells by cell disruption and extraction through the cell wall can be optimized using enzyme preparations either alone or in mixtures. However, the biotechnological application of enzymes is not currently exploited to its maximum potential within the food industry. Here, we discuss the use of environmentally friendly enzyme-assisted extraction of bioactive compounds from plant sources, particularly for food and nutraceutical purposes. In particular, we discuss an enzyme-assisted extraction of stevioside from Stevia rebaudiana, as an example of a process of potential value to the food industry.  相似文献   

18.
Abstract

This review explores recent advances in the use of immobilized cells for the production of metabolites used in the food industry, such as enzymes, amino acids, organic acids, alcohols, aroma compounds, polysaccharides, and pigments. Some food bioconversions such as fermentation of soy sauce and various hydrolysis are also considered. Special emphasis was placed on existing or potential industrial processes. This article also reports the effects of the reactor (configuration and working conditions), the immobilized cell physiological status (growing, nongrowing, or permeabilized), and of the carrier type, configuration, and size on the performance of immobilized cell systems. Compared with free cell fermentation, the main advantage of using immobilized cells is an increase in productivity, particularly in the case of continuous fermentation. For monoenzymatic reactions, nongrowing immobilized cells are often reported to exhibit a higher stability than free or immobilized enzymes.  相似文献   

19.
Perspectives for the industrial enzymatic production of glycosides   总被引:1,自引:0,他引:1  
Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.  相似文献   

20.
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号