首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Twenty-two carotenoid underproducing and thirteen overproducing mutants were obtained from Thermus thermophilus HB27. The strain HB27 was found to produce at least seven colored carotenoids, believed to be identical to those produced by Thermus aquaticus YT1. Based on the results of the genetic analyses performed on twelve carotenoid underproducing mutants, they were classified into three groups; groups 1, 2 and 3. No colored carotenoid was extracted from the cells of mutants belonging to groups 2 and 3, although the accumulation of phytoene, a colorless carotenoid, was observed in group 2 strains. Group 1 was subdivided into groups 1-a and 1-b, where 1-a strains produced neither colored carotenoids nor phytoene and 1-b strains produced two polar colored carotenoids. All of the overproducing mutants produced about twelve times as much seven colored carotenoid mixtures as the parental strain. The mutation loci among all the overproducing mutants were very close to one another, possibly in the same gene. Carotenoid overproducing mutants showed an extensive resistancy to UV-irradiation and showed poorer growth at higher temperatures. Carotenoid underproducing mutants were slightly more UV-sensitive but they grew almost normally at higher temperatures. These results suggest that carotenoids are secondary metabolites which are not essential for growth of T. thermophilus.  相似文献   

2.
The complete carotenoid composition of the thermophilic green sulfur bacterium Chlorobium tepidum strain TNO was determined by spectroscopic methods. Major carotenoids were four kinds of carotenes: γ-carotene, chlorobactene, and their 1′,2′-dihydro derivatives (1′,2′-dihydro-γ-carotene and 1′,2′-dihydrochlorobactene). In lesser amounts, hydroxyl γ-carotene, hydroxyl chlorobactene, and their glucoside fatty acid esters were found. The only esterified fatty acid present was laurate, and OH-chlorobactene glucoside laurate is a novel carotenoid. In other strains of C. tepidum, the same carotenoids were found, but the composition varied from strain to strain. The overall pigment composition in cells of strain TNO was 4 mol carotenoids and 40 mol bacteriochlorophyll c per mol bacteriochlorophyll a. The effects of nicotine on carotenoid biosynthesis in C. tepidum differed from those in the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus. Received: 3 February 1997 / Accepted: 6 June 1997  相似文献   

3.
The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both single and double crossover events, resulting in non-carotenoid-producing transformants. In addition, the crtYB gene, linked to either its homologous or a glyceraldehyde-3-phosphate dehydrogenase promoter, was overexpressed in the wild type and a β-carotene-accumulating mutant of X. dendrorhous. In several transformants containing multiple copies of the crtYB gene, the total carotenoid content was higher than in the control strain. This increase was mainly due to an increase of the β-carotene and echinone content, whereas the total content of astaxanthin was unaffected or even lower. Overexpression of the phytoene synthase-encoding gene (crtI) had a large impact on the ratio between mono- and bicyclic carotenoids. Furthermore, we showed that in metabolic engineered X. dendrorhous strains, the competition between the enzymes phytoene desaturase and lycopene cyclase for lycopene governs the metabolic flux either via β-carotene to astaxanthin or via 3,4-didehydrolycopene to 3-hydroxy-3′-4′-didehydro-β-ψ-caroten-4-one (HDCO). The monocylic carotenoid torulene and HDCO, normally produced as minority carotenoids, were the main carotenoids produced in these strains.  相似文献   

4.
The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both single and double crossover events, resulting in non-carotenoid-producing transformants. In addition, the crtYB gene, linked to either its homologous or a glyceraldehyde-3-phosphate dehydrogenase promoter, was overexpressed in the wild type and a beta-carotene-accumulating mutant of X. dendrorhous. In several transformants containing multiple copies of the crtYB gene, the total carotenoid content was higher than in the control strain. This increase was mainly due to an increase of the beta-carotene and echinone content, whereas the total content of astaxanthin was unaffected or even lower. Overexpression of the phytoene synthase-encoding gene (crtI) had a large impact on the ratio between mono- and bicyclic carotenoids. Furthermore, we showed that in metabolic engineered X. dendrorhous strains, the competition between the enzymes phytoene desaturase and lycopene cyclase for lycopene governs the metabolic flux either via beta-carotene to astaxanthin or via 3,4-didehydrolycopene to 3-hydroxy-3'-4'-didehydro-beta-psi-caroten-4-one (HDCO). The monocylic carotenoid torulene and HDCO, normally produced as minority carotenoids, were the main carotenoids produced in these strains.  相似文献   

5.
Photosynthetic capacity and quantum requirement of photosynthesis were evaluated in three secondary mutants of Scenedesmus obliquus possessing specific blocks in carotenoid biosynthesis. These were derived from the mutant, C-2 A', a strain which develops chlorophyll only in the light. All strains were capable of a normal and rapid production of chlorophyll and the development of a functional photosynthetic apparatus when exposed to light. LHC-II levels in the mutants lacking the β,ε-carotenoids (strains C-2 A'-34,1 and C-2 A'-67, 3b) were considerably reduced in fully greened cells but normal in the β,β-epoxycarotenoid deficient-only strain (C-2 A'-67,1) (Bishop, 1996). The maximum photosynthetic capacity and the quantum efficiency (at λ=682nm) of photosynthesis of cells of C-2A'-34,1 and C-2 A'-67,1 showed no significant changes when compared to the original parent strain, C-2 A'. However, the quantum requirement of the strain lacking both types of carotenoids, C-2 A'-67,3b, was slightly increased. It is of particular interest that both strains lacking the β,ε-carotenoids also show a preferential loss of the oligomeric form of the LHC and its associated chlorophylls. The potential requirement of the different carotenoids in maintenance of photosynthetic efficiency in Scenedesmus is discussed.  相似文献   

6.
Phaffia rhodozyma strains ATCC 24202, ATCC 24203, ATCC 24228, ATCC 24229, ATCC 24261, NRRL Y-10921, NRRL Y-10922 and NRRL Y-17268 were grown on culture media containing glucose, sucrose or xylose as carbon sources. Carotenoids were extracted from biomass and analyzed by HPLC with diode-array detection. The carotenoid profiles depended on both the strain considered and the carbon source employed. Astaxanthin, the main pigment found in P. rhodozyma, accounted for 42–91% of total carotenoids. Other carotenoids such as canthaxanthin, echinenone, 3-hydroxyechinenone, lycopene, 4-hydroxy-3′, 4′-didehydro-β-ψ-carotene and phoenicoxanthin were detected. The highest volumetric carotenoid concentration (3.60 mg L−1) was obtained with strain NRRL Y-17268 growing on xylose. In this case, astaxanthin accounted for 82% of total carotenoids. Received 29 May 1997/ Accepted in revised form 08 August 1997  相似文献   

7.
C57BL/6N inbred mice are used as the genetic background for producing knockout mice in large-scale projects worldwide; however, the genetic divergence among C57BL/6N-derived substrains has not been verified. Here, we identified novel single nucleotide polymorphisms (SNPs) specific to the C57BL/6NJ strain and selected useful SNPs for the genetic monitoring of C57BL/6N-derived substrains. Informative SNPs were selected from the public SNP database at the Wellcome Trust Sanger Institute by comparing sequence data from C57BL/6NJ and C57BL/6J mice. A total of 1,361 candidate SNPs from the SNP database could distinguish the C57BL/6NJ strain from 12 other inbred strains. We confirmed 277 C57BL/6NJ-specific SNPs including 10 nonsynonymous SNPs by direct sequencing, and selected 100 useful SNPs that cover all of the chromosomes except Y. Genotyping of 11 C57BL/6N-derived substrains at these 100 SNP loci demonstrated genetic differences among the substrains. This information will be useful for accurate genetic monitoring of mouse strains with a C57BL/6N-derived background.  相似文献   

8.
The qualitative and quantitative carotenoid composition of seven prasinophytes (eight clones) have been examined by chromatographic (TLC and HPLC) and spectroscopic methods (VIS, CD and mass spectra).

The prasinophytes studied fall into two pigment types: (A) those producing common green algal carotenoids (β,β-carotene, β,ε-carotene, lutein, zeaxanthin and the epoxides violaxanthin and neoxanthin) and (B) prasinophytes synthesising carotenoids peculiar to this algal class (prasinoxanthin, anhydroprasinoxanthin, uriolide, anhydrouriolide, micromonal, anhydromicromonal, micromonol, anhydromicromonol and dihydrolutein), where prasinoxanthin is a major carotenoid.

Mantoniella squamata (clone 2) was grown under both low and high light intensity, revealing differences in carotenoid composition. Lutein together with lesser amounts of zeaxanthin and its epoxides were only detected at high light intensity.

Three previously unidentified carotenoids were identified as prasinoxanthin (xanthophyll K), micromonal and dihydrolutein.  相似文献   


9.
Diversity among B6 strains of Agrobacterium tumefaciens.   总被引:5,自引:3,他引:2       下载免费PDF全文
A total of 20 laboratory substrains of Agrobacterium tumefaciens strain B6 were compared with respect to six characteristics, including 3-ketolactose production, lysogeny, octopine catabolism, tumorigenic host range, and plasmid content. Within this group of strains diversity was found for all characteristics except 3-ketolactose production. Six substrains were lysogenized with an omega-type phage, whereas one substrain appeared neither sensitive to nor lysogenized with this bacteriophage. All but two substrains catabolized octopine and induced tumors on carrot disks. These 18 substrains harbor deoxyribonucleic acid sequences homologous to pTiB6-806. The two substrains unable to catabolize octopine were nontumorigenic and lacked detectable Ti plasmid sequences. Of the 20 substrains, 13 also contained sequences homologous to the cryptic plasmid pAtB6-806; 2 of the 18 substrains tumorigenic on carrots failed to induce tumors on Kalanchoe leaves. Their inability to induced tumors on this host, could not be correlated with lysogeny, with the presence or absence of pAtB6-806, or with the very large cryptic plasmid recently described. The Ti plasmids from these two strains were indistinguishable from pTiB6-806 by restriction enzyme analysis and could genetically convert a cured A. tumefaciens strain to tumorigenicity on both plant species. The results with these two strains suggest that parameters of tumorigenicity, such as host range, may be controlled by the bacterial chromosome.  相似文献   

10.
Beta-carotene has been identified as an intermediate in a secondary electron transfer pathway that oxidizes Chl(Z) and cytochrome b(559) in Photosystem II (PS II) when normal tyrosine oxidation is blocked. To test the redox function of carotenoids in this pathway, we replaced the zeta-carotene desaturase gene (zds) or both the zds and phytoene desaturase (pds) genes of Synechocystis sp. PCC 6803 with the phytoene desaturase gene (crtI) of Rhodobacter capsulatus, producing carotenoids with shorter conjugated pi-electron systems and higher reduction potentials than beta-carotene. The PS II core complexes of both mutant strains contain approximately the same number of chlorophylls and carotenoids as the wild type but have replaced beta-carotene (11 double bonds), with neurosporene (9 conjugated double bonds) and beta-zeacarotene (9 conjugated double bonds and 1 beta-ionylidene ring). The presence of the ring appears necessary for PS II assembly. Visible and near-infrared spectroscopy were used to examine the light-induced formation of chlorophyll and carotenoid radical cations in the mutant PS II core complexes at temperatures from 20 to 160 K. At 20 K, a carotenoid cation radical is formed having an absorption maximum at 898 nm, an 85 nm blue shift relative to the beta-carotene radical cation peak in the WT, and consistent with the formation of the cation radical of a carotenoid with 9 conjugated double bonds. The ratio of Chl(+)/Car(+) is higher in the mutant core complexes, consistent with the higher reduction potential for Car(+). As the temperature increases, other carotenoids become accessible to oxidation by P(680)(+).  相似文献   

11.
Evidence for the existence of two molecular species of exfoliative toxin (ET) synthesized by Staphylococcus hyicus (SHET) under chromosomal and plasmid control is presented. Serological evidence that these molecular species of toxins are distinct from each other is given. The molecular weights of SHET from plasmidless strain P-1 (SHETA) and from plasmid-carrying strains P-10 and P-23 (SHETB) were almost equal. Both of the serotypes of SHET exhibited exfoliation in 1-day-old chickens. The plasmid-cured (P(-)) substrains (P-23C1 and P-23C2) of S. hyicus P-23 did not cause exfoliation in 1-day-old chickens, whereas P(-) substrains (P-10C1 and P-10C2) of strain P-10 caused exfoliation, but they decreased their exfoliative activity. These findings suggest that SHETB was synthesized along with SHETA by strain P-10, whereas the P-23 strain synthesized SHETB alone. The plasmid-carrying strain (P-23) as well as the plasmidless strain (P-1) exhibited the typical clinical signs of exudative epidermitis in pigs. However, plasmid-cured (P(-)) substrains of P-23 (P23C1 and P23C2) did not exhibit the typical clinical signs of exudative epidermitis. These findings suggest that SHETA is synthesized under chromosomal control and SHETB is synthesized under plasmid control and that SHET-producing strains can be divided into three groups: SHETA-producing strains, SHETB-producing strains, and strains producing both toxins.  相似文献   

12.
SYNOPSIS. Antigenic constitution of 5 Trichomonas gallinae strains and substrains was analyzed by gel diffusion technics. Fresh isolates of the very virulent JB and of an avirulent SG strain as well as avirulent substrains JBC and SGC, derived from JB and SG respectively by prolonged in vitro cultivation, were used in the experiments. An originally avirulent AG strain that was attenuated still further and lost its infectivity for pigeons during many years of serial transfers in nonliving media also was analyzed. Two major groups of antigens, A and B, were differentiated on the basis of precipitin line patterns formed in gel diffusion reactions involving the 5 strains and substrains and antisera prepared in rabbits against each of these trichomonad stocks. Group A was subdivided further into subgroups [A] and (A). JB, JBC, AG, and SGC trichomonads appeared to share all or nearly all antigens of both these subgroups, but AG strain contained some unique [A] and (A) antigens in addition to those which it had in common with the remaining 4 strains and substrains. Group B antigens were divided into 5 subgroups, B1 to B5. The complete B1 antigenic complex was found in JB and JBC trichomonads and part of this complex was present also in SG strain and SGC substrain. In all instances, subgroup B1 antigens stimulated production of specific antibodies in rabbits and combined with these antibodies present in immune sera. The complete B2 antigenic complex was found only in JBC substrain. Some subgroup B2 antigens were present also in JB trichomonads. Very few of these, however, were capable of stimulating antibody production in rabbits. The more numerous B2 elements of JB strain that did not stimulate immunologic responses in rabbits, might be in the form of incomplete hapten-like antigens. All subgroup B2 antigens found in JB strain represented only a portion of the B2 complex associated with JBC substrain. Subgroup B2 was characteristic of SG and SGC trichomonads, the latter substrain differing from the parental SG strain in the levels of both B2 and B1 antigens; these differences, however, were purely quantitative. JB strain reacted with some of subgroup B3 antibodies present in SG and SGC antisera, but failed to stimulate antibody formation against any of these antigens in rabbits. The B3 elements of JB trichomonads might be incomplete antigens. AG strain was characterized by having B4 and B5 antigenic complexes. The very small part of subgroup B4, represented by a weak precipitin line in reactions between JB strain or JBC substrain and anti-AG serum, suggested the presence of some incomplete B4 antigens in these trichomonads. Irrespective of whether freshly isolated avirulent strains or substrains attenuated by prolonged in vitro cultivation are examined by gel diffusion, such organisms are found richer in subgroup B antigens than the fully virulent JB trichomonads. All the results suggest that there may be a direct relationship between antigenic constitution and virulence of T. gallinae strains.  相似文献   

13.
Aim:  The aim of this study was to evaluate the effect of γ radiation on the carotenoid content of two strains of the Enterobacteriaceae : Pantoea agglomerans .
Methods and Results:  Pantoea agglomerans strains ATCC 49174 and RL1 were used for this study. Successive radiation treatments were performed to study the radiotolerance. Total carotenoids were obtained by multiple extraction using chloroform/methanol (2 : 1), quantified by measuring the optical density at 453 nm and their antioxidant activity measured by a colorimetric method. The D 10 studies were conducted using a UC-15A irradiator loaded with 60Co. Bacterial counts from various dilutions were carried out after irradiation. Strain ATCC 49174 irradiated at 1 kGy produced 4·3 times more carotenoids than the control, whereas carotenoid synthesis increased by 2·9-fold in the strain RL1. However, there was no significant difference in the D 10 values.
Conclusion:  Carotenoid increased production is influenced by γ radiation but does not modify the tolerance to radiations.
Significance and Impact of the Study:  To our knowledge, this is the first study to demonstrate the effects of γ radiation on carotenoid production levels.  相似文献   

14.
Many animals use carotenoid pigments to produce yellow, orange, and red coloration. In birds, at least 10 carotenoid compounds have been documented in red feathers; most of these are produced through metabolic modification of dietary precursor compounds. However, it is poorly understood how lineages have evolved the biochemical mechanisms for producing red coloration. We used high‐performance liquid chromatography to identify the carotenoid compounds present in feathers from 15 species across two clades of blackbirds (the meadowlarks and allies, and the caciques and oropendolas; Icteridae), and mapped their presence or absence on a phylogeny. We found that the red plumage found in meadowlarks includes different carotenoid compounds than the red plumage found in caciques, indicating that these gains of red color are convergent. In contrast, we found that red coloration in two closely related lineages of caciques evolved twice by what appear to be similar biochemical mechanisms. The C4‐oxygenation of dietary carotenoids was responsible for each observed transition from yellow to red plumage coloration, and has been commonly reported by other researchers. This suggests that the C4‐oxygenation pathway may be a readily evolvable means to gain red coloration using carotenoids.  相似文献   

15.
We isolated a strain of Corynebacterineae from surface seawater from the Inland Sea of Japan. This strain, AIST-1, was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The colony was red-colored, and the pigments were identified to be carotenoid derivatives. The structures of two major carotenoids were (2'S)-deoxymyxol 1'-glucoside, a dihydroxyl derivative of gamma-carotene with 12 conjugated double bonds, and (2'S)-4-ketodeoxymyxol 1'-glucoside. Their glucosyl acyl esters and mycoloyl esters were also identified. While these carotenoid moieties have been found in only a few other bacteria, the carotenoid mycoloyl esters are novel carotenoid derivatives. The type strain of G. terrae NBRC 10016T also contained the same carotenoids, but the composition of the two carotenoid glucosides was low and the total carotenoid content was less than one tenth of that of strain AIST-1.  相似文献   

16.
The interaction of dietary carotenoids with radical species   总被引:4,自引:0,他引:4  
Dietary carotenoids react with a wide range of radicals such as CCl3O2*, RSO2*, NO2*, and various arylperoxyl radicals via electron transfer producing the radical cation of the carotenoid. Less strongly oxidizing radicals, such as alkylperoxyl radicals, can lead to hydrogen atom transfer generating the neutral carotene radical. Other processes can also arise such as adduct formation with sulphur-centered radicals. The oxidation potentials have been established, showing that, in Triton X-100 micelles, lycopene is the easiest carotenoid to oxidize to its radical cation and astaxanthin is the most difficult. The interaction of carotenoids and carotenoid radicals with other antioxidants is of importance with respect to anti- and possibly pro-oxidative reactions of carotenoids. In polar environments the vitamin E (alpha-tocopherol) radical cation is deprotonated (TOH*+ --> TO* + H+) and TO* does not react with carotenoids, whereas in nonpolar environments such as hexane, TOH*+ is converted to TOH by hydrocarbon carotenoids. However, the nature of the reaction between the tocopherol and various carotenoids shows a marked variation depending on the specific tocopherol homologue. The radical cations of the carotenoids all react with vitamin C so as to "repair" the carotenoid.  相似文献   

17.
A number of mechanisms are responsible for producing the variation in natural colours, and these need not act in isolation. A recent hypothesis states that carotenoid‐based coloration, in addition to carotenoid availability, is also enhanced by elevated levels of circulating testosterone (T). This has only been tested for carotenoid‐coloured bare parts in birds. We performed an experimental manipulation of T levels and examined the effects on the yellow carotenoid‐based breast plumage in captive yearling blue tits Cyanistes caeruleus, of which half received a diet supplemented with carotenoids. T treatment resulted in elevated plasma T compared to controls and carotenoid supplementation strongly increased plasma carotenoid levels. T treatment resulted in an additional increase in plasma carotenoid levels but only in the carotenoid‐supplemented males. Carotenoid supplementation resulted in more intense breast colour (carotenoid chroma), as expected. However, there was no effect of testosterone on plumage coloration at either dietary carotenoid level. Our results suggest that T can cause an increase in plasma carotenoid concentration, but that this does not necessarily lead to improved carotenoid‐based plumage coloration.  相似文献   

18.
S Ouchane  M Picaud  C Vernotte    C Astier 《The EMBO journal》1997,16(15):4777-4787
Carotenoids are essential to protection against photooxidative damage in photosynthetic and non-photosynthetic organisms. In a previous study, we reported the disruption of crtD and crtC carotenoid genes in the purple bacterium Rubrivivax gelatinosus, resulting in mutants that synthesized carotenoid intermediates. Here, carotenoid-less mutants have been constructed by disruption of the crtB gene. To study the biological role of carotenoids in photoprotection, the wild-type and the three carotenoid mutants were grown under different conditions. When exposed to photooxidative stress, only the carotenoid-less strains (crtB-) gave rise with a high frequency to four classes of mutants. In the first class, carotenoid biosynthesis was partially restored. The second class corresponded to photosynthetic-deficient mutants. The third class corresponded to mutants in which the LHI antenna level was decreased. In the fourth class, synthesis of the photosynthetic apparatus was inhibited only in aerobiosis. Molecular analyses indicated that the oxidative stress induced mutations and illegitimate recombination. Illegitimate recombination events produced either functional or non-functional chimeric genes. The R. gelatinosus crtB- strain could be very useful for studies of the SOS response and of illegitimate recombination induced by oxidants in bacteria.  相似文献   

19.
The detailed effect on the light-harvesting apparatus of three different wild-type strains of Rhodopseudomonas acidophila in response to changes in both light-intensity and temperature have been investigated. In all three strains at high light-intensities (160 mol s m2 and above) the only LH2 antenna complex synthesised is the B800–850 complex. In strains 7050 and 7750 as the light-intensity is lowered the B800–850 complex is gradually replaced by another type of LH2 the B800–820 complex. However, at no light-intensities studied is this changeover complete when the cells are grown at 30°C. If however, the light-intensity is lowered at temperatures below 25°C with strain 7750 there is a complete replacement of the B800–850 complex by the B800–820 complex. At all light-intensities and temperatures tested, strain 10050 only synthesised the B800–850 complex. Strain 7050 also responded to changes in light-intensity by altering its carotenoid composition. At high light-intensity the major carotenoids were rhodopin and rhodopin-glucoside, while at low light-intensities the major ones were rhodopinal and rhodopinal-glucoside. This change in carotenoid content started to occur at rather higher light-intensities than the switchover from B800–850 to B800–820.  相似文献   

20.
Proviral sequences complementary to the C3H mouse mammary tumor virus RNA genome are present in the DNA of early occurring mammary tumors of C3H/HeN mice and are absent from apparently normal C3H/HeN tissues; these sequences are non-germ line transmitted in C3H/HeN mice and have been termed tumor-associated sequences; (W. Drohan et al., J. Virol. 21:986-995, 1977). We report here that tumor-associated sequences are present in the DNA of spontaneous mammary tumors that occur early in the life of several inbred, high-tumor-incidence mouse strains but are absent in mammary tumors that occur later in life in low- and moderate-tumor-incidence strains. These sequences are also absent in apparently normal organs tested from numerous laboratory mouse strains, feral mice, Mus musculus subspecies, and other Mus species. Sequences represented in tumor-associated sequence RNA, however, are present as endogenous provirus in GR mice (at approximately four copies per haploid genome) and in two of five substrains of C3H mice tested (at approximately one copy per haploid genome). The two substrains of C3H mice positive for endogenous tumor-associated sequence provirus were recently (circa 1930) separated from the negative substrains of C3H mice. The results may be explained by the unlikely chance segregation of proviral sequences or by the recent integration of viral genes (within the last few decades). Whereas radioactively labeled mouse mammary tumor virus 60-70S RNA or complementary DNA detected mouse mammary tumor virus-related proviral information in all laboratory mouse strains, feral mice, subspecies of M. musculus, and other species of Mus, the use of tumor-associated sequence RNA clearly revealed the genetic diversity that may exist between different colonies or substrains of "inbred" laboratory mice commonly used in cancer research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号