首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we created LDL receptor (LDLr) defective (WHHL) transgenic rabbits expressing human apo[a] to examine whether LDLr mediates the Lp[a] clearance from the plasma. By crossbreeding WHHL rabbits with human apo[a] transgenic rabbits, we obtained two groups of human apo[a] transgenic rabbits with defective LDLr functions: apo[a](1/0) WHHL heterozygous (LDLr(+/-) and apo[a](+/0) WHHL homozygous (LDLr(-/-) rabbits. The lipid and lipoprotein levels of human apo[a] WHHL rabbits were compared to those of human apo[a] transgenic rabbits with normal LDLr functions (LDLr(+/+). The apo[a] production rate was evaluated by analyzing apo[a] mRNA expression in the liver, the major site for apo[a] synthesis in transgenic rabbits. We found that pre-beta lipoproteins were markedly increased accompanied by a 2-fold increase in the plasma Lp[a] in apo[a](+/0)/LDLr(+/-) rabbits and a 4.2-fold increase in apo[a](+/0)/LDLr(-/-) rabbits compared with that in apo[a](+/0) rabbits with normal LDLr function. In apo[a](+/0)/LDLr(-/-) rabbits, there was a marked increase in plasma total cholesterol and triglycerides, as was found in their counterpart non-transgenic WHHL rabbits. Northern blot analysis revealed that hepatic apo[a] expression in WHHL transgenic rabbits was similar to that in LDLr(+/+) transgenic rabbits, suggesting the accumulation of plasma Lp[a] in WHHL transgenic rabbits was not due to increased apo[a] synthesis.In conclusion, absence of a functional LDLr leads to a marked accumulation of plasma Lp[a] in human apo[a] transgenic WHHL rabbits and LDLr may participate in the catabolism of Lp[a] in rabbits.  相似文献   

2.
Uremic patients have increased plasma lipoprotein(a) [Lp(a)] levels and elevated risk of cardiovascular disease. Lp(a) is a subfraction of LDL, where apolipoprotein(a) [apo(a)] is disulfide bound to apolipoprotein B-100 (apoB). Lp(a) binds oxidized phospholipids (OxPL), and uremia increases lipoprotein-associated OxPL. Thus, Lp(a) may be particularly atherogenic in a uremic setting. We therefore investigated whether transgenic (Tg) expression of human Lp(a) increases atherosclerosis in uremic mice. Moderate uremia was induced by 5/6 nephrectomy (NX) in Tg mice with expression of human apo(a) (n = 19), human apoB-100 (n = 20), or human apo(a) + human apoB [Lp(a)] (n = 15), and in wild-type (WT) controls (n = 21). The uremic mice received a high-fat diet, and aortic atherosclerosis was examined 35 weeks later. LDL-cholesterol was increased in apoB-Tg and Lp(a)-Tg mice, but it was normal in apo(a)-Tg and WT mice. Uremia did not result in increased plasma apo(a) or Lp(a). Mean atherosclerotic plaque area in the aortic root was increased 1.8-fold in apo(a)-Tg (P = 0.025) and 3.3-fold (P = 0.0001) in Lp(a)-Tg mice compared with WT mice. Plasma OxPL, as detected with the E06 antibody, was associated with both apo(a) and Lp(a). In conclusion, expression of apo(a) or Lp(a) increased uremia-induced atherosclerosis. Binding of OxPL on apo(a) and Lp(a) may contribute to the atherogenicity of Lp(a) in uremia.  相似文献   

3.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

4.
Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp55/57→Ala55/57 substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp57→Ala57 substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)’s pro-atherogenic potential.  相似文献   

5.
Lipoprotein (a) [Lp(a)] is a LDL-like particle with one apolipoprotein(a) [apo(a)] covalently bound to apolipoprotein B, the structural protein of Low Density Lipoprotein (LDL). Lewis Lung Carcinoma (LL/2) cells exhibited delayed growth and reduced angiogenesis in apo(a) transgenic mice, expressing a recombinant apo(a) [r-apo(a)] with 18 kringle 4 repeats. The mean microvessel density of subcutaneous LL/2 tumors from apo(a) transgenic mice was significantly lower than that of tumors from control wild type mice. CHO cells secreting a truncated apo(a) protein with only six kringle 4 repeats did not exhibit delayed tumor growth nor did it impair angiogenesis. These data point to an unappreciated role of human apo(a) in angiogenesis and cancer biology. As angiogenesis is necessary for reendothelialization following vascular injury, suppression of angiogenesis by apo(a) may also contribute to the atherogenicity of apo(a). The differences between the truncated apo(a) and r-apo(a) are consistent with the higher atherogenicity of higher molecular weight isoforms.  相似文献   

6.
Lipoprotein[a] (Lp[a]) is assembled by a two-step process involving an initial lysine-dependent binding between apolipoprotein B-100 (apoB-100) and apolipoprotein[a] (apo[a]) that facilitates the formation of a disulphide bond between apoB-100Cys4,326 and apo[a]Cys4,057. Previous studies of transgenic mice expressing apoB-95 (4,330 amino acids) and apoB-97 (4,397 amino acids) have shown that apoB-100 amino acids 4,330-4,397 are important for the initial binding to apo[a]. Furthermore, a lysine-rich peptide spanning apoB-100 amino acids 4,372-4,392 has recently been shown to bind apo[a] and inhibit Lp[a] assembly in vitro. This suggests that a putative apo[a] binding site exists in the apoB-4,372-4,392 region. The aim of our study was to establish whether the apoB-4,372-4,392 sequence was important for Lp[a] assembly in the context of the full-length apoB-100. Transgenic mice were created that expressed a mutant human apoB-100, apoB-100K4-->S4, in which all four lysine residues in the 4,372-4,392 sequence were mutated to serines. The apoB-100K4-->S4 mutant showed a reduced capacity to form Lp[a] in vitro compared with wild-type human apoB-100. Double transgenic mice expressing both apoB-100K4-->S4 and apo[a] contained significant amounts of free apo[a] in the plasma, indicating a less-efficient assembly of Lp[a] in vivo. Taken together, these results clearly show that the apoB-4,372-4,392 sequence plays a role in Lp[a] assembly.  相似文献   

7.
Lipoprotein (a) [Lp(a)] is a heterodimer of apolipoprotein (a) [apo(a)] and apolipoprotein B-100 (apoB-100) of low density lipoprotein linked by a disulfide bond. Apo(a) and apoB-100 are synthesized by the liver and covalently associate or couple to form Lp(a) extracellularly. Elevated plasma Lp(a) is an independent risk factor for vascular injury disorders such as restenosis after balloon angioplasty and accelerated graft atherosclerosis following heart transplantation. Lp(a) is not expressed in laboratory animals making studies of its pathophysiology difficult. To overcome this problem, we explored the possibility of generating Lp(a) in rabbit plasma using replication-deficient adenovirus vector mediated gene delivery. Rabbits were chosen because of their large vessels and unlike mouse or rat, rabbit apoB-100 could interact with apo(a) to generate Lp(a). The recombinant (r) adenovirus vector construct used encoded a 200 kDa apo(a) [Ad-apo(a)]. Ad-apo(a) injection into the rabbit marginal vein caused the appearance of plasma rLp(a). Injection of a r adenovirus vector expressing the bacterial LacZ gene (Ad-LacZ) or PBS (vehicle) did not result in detectable plasma rLp(a). These are the first results to demonstrate plasma expression of rLp(a) in rabbits using adenovirus vector mediated gene transfer. Therefore, this system may be suitable for investigating Lp(a)'s role in the development of vascular injury diseases in a rabbit model.  相似文献   

8.
Scavenger receptor class B type I (SR-BI) is a multi-ligand receptor that binds a variety of lipoproteins, including high density lipoprotein (HDL) and low density lipoprotein (LDL), but lipoprotein(a) [Lp(a)] has not been investigated as a possible ligand. Stable cell lines (HEK293 and HeLa) expressing human SR-BI were incubated with protein- or lipid-labeled Lp(a) to investigate SR-BI-dependent Lp(a) cell association. SR-BI expression enhanced the association of both 125I- and Alexa Fluor-labeled protein from Lp(a). By confocal microscopy, SR-BI was also found to promote the internalization of fluorescent lipids (BODIPY-cholesteryl ester (CE)- and DiI-labeled) from Lp(a), and by immunocytochemistry the cellular internalization of apolipoprotein(a) and apolipoprotein B. When dual-labeled (3H-cholesteryl ether,125I-protein) Lp(a) was added to cells expressing SR-BI, there was a greater relative increase in lipid uptake over protein, indicating that SR-BI mediates selective lipid uptake from Lp(a). Compared with C57BL/6 control mice, transgenic mice overexpressing human SR-BI in liver were found to have increased plasma clearance of 3H-CE-Lp(a), whereas mouse scavenger receptor class B type I knockout (Sr-b1-KO) mice had decreased plasma clearance (fractional catabolic rate: 0.63 ± 0.08/day, 1.64 ± 0.62/day, and 4.64 ± 0.40/day for Sr-b1-KO, C57BL/6, and human scavenger receptor class B type I transgenic mice, respectively). We conclude that Lp(a) is a novel ligand for SR-BI and that SR-BI mediates selective uptake of Lp(a)-associated lipids.  相似文献   

9.
High lipoprotein(a) (Lp(a)) levels are a major risk factor for the development of atherosclerosis. The risk of elevated Lp(a) concentration is increased significantly in patients who also have high levels of low density lipoprotein (LDL) cholesterol. To test the hypothesis that increased plasma levels of Lp(a) may enhance the development of atherosclerosis in the setting of hypercholesterolemia, we generated Watanabe heritable hyperlipidemic (WHHL) transgenic (Tg) rabbits expressing human apolipoprotein(a) (apo(a)). We report here that Tg WHHL rabbits developed more extensive advanced atherosclerotic lesions than did non-Tg WHHL rabbits. In particular, the advanced atherosclerotic lesions in Tg WHHL rabbits were frequently associated with calcification, which was barely evident in non-Tg WHHL rabbits. To investigate the molecular mechanism of Lp(a)-induced vascular calcification, we examined the effect of human Lp(a) on cultured rabbit aortic smooth muscle cells and found that smooth muscle cells treated with Lp(a) showed increased alkaline phosphatase activity and enhanced calcium accumulation. These results demonstrate for the first time that Lp(a) accelerates advanced atherosclerotic lesion formation and may play an important role in vascular calcification.  相似文献   

10.
The cellular and molecular mechanisms responsible for lipoprotein [a] (Lp[a]) catabolism are unknown. We examined the plasma clearance of Lp[a] and LDL in mice using lipoproteins isolated from human plasma coupled to radiolabeled tyramine cellobiose. Lipoproteins were injected into wild-type, LDL receptor-deficient (Ldlr-/-), and apolipoprotein E-deficient (Apoe-/-) mice. The fractional catabolic rate of LDL was greatly slowed in Ldlr-/- mice and greatly accelerated in Apoe-/- mice compared with wild-type mice. In contrast, the plasma clearance of Lp[a] in Ldlr-/- mice was similar to that in wild-type mice and was only slightly accelerated in Apoe-/- mice. Hepatic uptake of Lp[a] in wild-type mice was 34.6% of the injected dose over a 24 h period. The kidney accounted for only a small fraction of tissue uptake (1.3%). To test whether apolipoprotein [a] (apo[a]) mediates the clearance of Lp[a] from plasma, we coinjected excess apo[a] with labeled Lp[a]. Apo[a] acted as a potent inhibitor of Lp[a] plasma clearance. Asialofetuin, a ligand of the asialoglycoprotein receptor, did not inhibit Lp[a] clearance. In summary, the liver is the major organ accounting for the clearance of Lp[a] in mice, with the LDL receptor and apolipoprotein E having no major roles. Our studies indicate that apo[a] is the primary ligand that mediates Lp[a] uptake and plasma clearance.  相似文献   

11.
The assembly of lipoprotein(a) (Lp(a)) is a two-step process which involves the interaction of kringle-4 (K-IV) domains in apolipoprotein(a) (apo(a)) with Lys groups in apoB-100. Lys analogues such as tranexamic acid (TXA) or delta-aminovaleric acid (delta-AVA) proved to prevent the Lp(a) assembly in vitro. In order to study the in vivo effect of Lys analogues, transgenic apo(a) or Lp(a) mice were treated with TXA or delta-AVA and plasma levels of free and low density lipoprotein bound apo(a) were measured. In parallel experiments, McA-RH 7777 cells, stably transfected with apo(a), were also treated with these substances and apo(a) secretion was followed. Treatment of transgenic mice with Lys analogues caused a doubling of plasma Lp(a) levels, while the ratio of free:apoB-100 bound apo(a) remained unchanged. In transgenic apo(a) mice a 1. 5-fold increase in plasma apo(a) levels was noticed. TXA significantly increased Lp(a) half-life from 6 h to 8 h. Incubation of McA-RH 7777 cells with Lys analogues resulted in an up to 1. 4-fold increase in apo(a) in the medium. The amount of intracellular low molecular weight apo(a) precursor remained unchanged. We hypothesize that Lys analogues increase plasma Lp(a) levels by increasing the dissociation of cell bound apo(a) in combination with reducing Lp(a) catabolism.  相似文献   

12.
In this study we found that macrophage metalloelastase, MMP-12 cleaves, in vitro, apolipoprotein(a) (apo(a)) in the Asn3518-Val3519 bond located in the linker region between kringles IV-4 and IV-5, a bond immediately upstream of the Ile3520-Leu3521 bond, shown previously to be the site of action by neutrophil elastase (NE). We have also shown that human apo(a) injected into the tail vein of control mice undergoes degradation as reflected by the appearance of immunoreactive fragments in the plasma and in the urine of these animals. To define whether either or both of these enzymes may be responsible for the in vivo apo(a) cleavage, we injected intravenously MMP-12(-/-), NE -/- mice and litter mates, all of the same strain, with either lipoprotein(a) (Lp(a)), full-length free apo(a), or its N-terminal fragment, F1, obtained by the in vitro cleavage of apo(a) by NE. In the plasma of Lp(a)/apo(a)-injected mice, F1 was detected in control and NE -/- mice but was virtually absent in the MMP-12(-/-) mice. Moreover, fragments of the F1 type were present in the urine of the animals except for the MMP-12(-/-) mice. These fragments were significantly smaller in size than those observed in the plasma. All of the animals injected with F1 exhibited small sized fragments in their urine. These observations provide evidence that, in the mouse strain used, MMP-12 plays an important role in the generation of F1 from injected human Lp(a)/apo(a) and that this fragment undergoes further cleavage during renal transit via a mechanism that is neither NE- nor MMP-12-dependent. Thus, factors influencing the expression of MMP-12 may have a modulating action on the biology of Lp(a).  相似文献   

13.
In a previous study [C. Doucet et al., J. Lipid Res 35:263–270, 1994], we have shown that plasma lipoprotein (a) [Lp(a)] levels were significantly elevated in a population of unrelated chimpanzees as compared to those in normolipidemic human subjects. Nonetheless, the inverse correlation between Lp(a) levels and apolipoprotein (a) [apo(a)] isoforms typical of man was maintained in the chimpanzee. In the present study, we describe the density profiles of apo B- and apo A1-containing lipoproteins and of Lp(a) in chimpanzee plasmas heterozygous for apo(a) isoforms after fractionation by single spin ultracentrifugation in an isopycnic gradient. The distribution of apo(a) isoforms in the density gradient was also examined by SDS-agarose gel electrophoresis and immunoblotting using chemiluminescence detection. In all double-band phenotypes examined, the smallest isoform was present along the entire length of the density gradient. The density distribution of the second isoform varied according to the size difference between the respective isoforms. Two isoforms close in size (difference in apparent molecular mass ? 60 kDa) were present together in every gradient subfraction. On the contrary, when the two isoforms displayed distinct molecular mass (maximal difference in apparent molecular mass = 340 kDa), then the largest was principally present in the densest fractions of the gradient (d > 1.1 mg/ml). These observations suggest that Lp(a) particles with small apo(a) isoforms are more susceptible to interact with other lipoproteins than are Lp(a) particles with large isoforms.  相似文献   

14.
School-age children with high lipoprotein(a) [Lp(a)] levels were screened and family studies were conducted to examine the relationship between high Lp(a) levels and apolipoprotein(a) [apo(a)] isoforms in families. All the probands from 17 families had one of the A2 to A12 apo(a) isoforms, which are the smaller apo(a) isoforms of the 25 different isoforms thus far detected. The ratio of subjects with high plasma Lp(a) levels was 0.47 among the first-degree relatives. All 15 relatives with high plasma Lp(a) levels shared one of the small apo(a) isoforms with the proband in each family, while 16 of 17 relatives with normal Lp(a) levels did not. These data indicate the frequent occurrence of familial aggregations of high Lp(a) levels associated with one of the small apo(a) isoforms.  相似文献   

15.
Increased plasma concentration of lipoprotein(a) [Lp(a)] is an established independent risk factor for coronary artery disease (CAD), which is strongly genetically determined. This study was designed to investigate the relationship between the K-IV and (TTTTA)n apolipoprotein(a) [apo(a), protein; APOA, gene] polymorphisms, as well as the C766T low-density lipoprotein receptor-related protein (LRP) and the (CGG)n very low density lipoprotein receptor (VLDLR) polymorphisms on the one hand, and plasma Lp(a) levels in Czech subjects who underwent coronary angiography on the other hand. The lengths of the alleles of the APOA K-IV and (TTTTA)n polymorphisms were strongly inversely correlated with plasma Lp(a) levels in univariate analysis (r = -0.41, p < 10(-4) and r = -0.20, p < 0.01, respectively). Multivariate analysis revealed significant associations between the APOA polymorphisms studied and plasma Lp(a) levels in subjects expressing only one APOA K-IV allele (p < 10(-6) for K-IV and p < 0.001 for TTTTA). In subjects expressing both APOA K-IV alleles, the multivariate analysis revealed that only the APOA K-IV alleles were inversely correlated with plasma Lp(a) levels (p < 0.001). Associations between both the LRP and VLDLR gene polymorphisms and plasma Lp(a) levels were only of borderline significance (p < 0.06 and p < 0.07, respectively) and were not confirmed in multivariate analysis. In conclusion, both APOA length polymorphisms significantly influenced plasma Lp(a) concentration in the Czech population studied, and this circumstance could explain the association in this population observed earlier between APOA (TTTTA)n polymorphism and CAD (Benes et al. 2000). Only a minor role in the regulation of plasma Lp(a) levels is suggested for the C766T LRP and the (CGG)n VLDLR polymorphisms.  相似文献   

16.
Lipoprotein (a) [Lp(a)] was isolated from several donors and its apolipoprotein (a) [apo(a)] dissociated by a reductive treatment, generating the apo(a)-free form of Lp(a) [Lp(a--)] that contains apolipoprotein B (apo B) as its sole protein. Using anti-apo B monoclonal antibodies, the properties of apo B in Lp(a), Lp(a--), and autologous low-density lipoprotein (LDL) were compared. Marked differences in apo B immunoreactivity were found between these lipoproteins, due to the presence of apo(a) in Lp(a). Apo(a) enhanced the expression of two epitopes in the amino-terminal part of apo B while it diminished the immunoreactivity of three other epitopes in the LDL receptor binding domain. Accordingly, the binding of the lipoproteins to the LDL receptor was also decreased in the presence of apo(a). In a different experimental system, the incubation of antibodies that react with 27 distinct epitopes distributed along the whole length of apo B sequence with plastic-bound Lp(a) and Lp(a--) failed to reveal any epitope of apo B that is sterically hindered by the presence of apo(a). Our results demonstrate that the presence of apo(a) modified the organization and function of apo B in Lp(a) particles. The data presented indicate that most likely the modification is not due to a steric hindrance but that some more profound conformational changes are involved. We suggest that the formation of the disulfide bridge between apo B and apo(a) in Lp(a) alters the system of disulfide bonds present in apo B and thereby modifies apo B structure.  相似文献   

17.
Lipoprotein(a) [Lp(a)] comprises of an LDL particle and apolipoprotein(a) [apo(a)] and its elevated levels are considered a risk factor for atherosclerosis. The aim of our study was to find out whether elevated Lp(a) levels are associated with increased risk of atherosclerosis in patients with multiple other risk factors. We further tested the association of three polymorphisms of the apo(a) gene promoter with Lp(a) levels. No significant correlation was detected between Lp(a) levels and lipid and clinical parameters tested. The study demonstrated a significantly (p=0.0219) elevated Lp(a) level (mean 28+/-35 mg/dl, median 0.14) in patients with coronary heart disease (CHD). In a group with premature CHD the correlation was not significant anymore. There was a significant correlation between polymorphic loci of the promoter region of apo(a) gene and Lp(a) levels (+93C T, p=0.0166, STR, p<0.0001). Our study suggests that elevated Lp(a) level is an independent risk factor of CHD in carriers of other important CHD risk factors. Observed association of sequence variants of the promoter of apo(a) gene with Lp(a) levels is caused in part due to linkage to a restricted range of apo(a) gene length isoforms.  相似文献   

18.
Elevated plasma concentrations of Lp(a) [lipoprotein(a)] are an emerging risk factor for atherothrombotic disease. Apo(a) [apolipoprotein(a)], the unique glycoprotein component of Lp(a), contains tandem repeats of a plasminogen kringle (K) IV-like domain. In the light of recent studies suggesting that apo(a)/Lp(a) affects endothelial function, we evaluated the effects of apo(a)/Lp(a) on growth and migration of cultured HUVECs (human umbilical-vein endothelial cells). Two full-length r-apo(a) [recombinant apo(a)] variants (12K and 17K), as well as Lp(a), were able to stimulate HUVEC growth and migration to a comparable extent; 17K r-apo(a) also decreased the levels of total and active transforming growth factor-beta secreted by these cells. Using additional r-apo(a) variants corresponding to deletions and/or site-directed mutants of various kringle domains in the molecule, we were able to determine that the observed effects of full-length r-apo(a) on HUVECs were dependent on the presence of a functional lysine-binding site(s) in the apo(a) molecule. With respect to signalling events elicited by apo(a) in HUVECs, we found that 17K treatment of the cells increased the phosphorylation level of FAK (focal adhesion kinase) and MAPKs (mitogen-activated protein kinases), including ERK (extracellular-signal-regulated kinase), p38 and JNK (c-Jun N-terminal kinase). In addition, we showed that LM609, the function-blocking antibody to integrin alphaVbeta3, abrogated the effects of 17K r-apo(a) and Lp(a) on HUVECs. Taken together, the results of the present study suggest that the apo(a) component of Lp(a) signals through integrin alphaVbeta3 to activate endothelial cells.  相似文献   

19.
Lipoprotein(a) [Lp(a)] is a quantitative trait in human plasma. Lp(a) consists of a low-density lipoprotein and the plasminogen-related apolipoprotein(a) [apo(a)]. The apo(a) gene determines a size polymorphism of the protein, which is related to Lp(a) levels in plasma. In an attempt to gain a deeper insight into the genetic architecture of this risk factor for coronary heart disease, we have investigated the basis of the apo(a) size polymorphism by pulsed field gel electrophoresis of genomic DNA employing various restriction enzymes (SwaI, KpnI, KspI, SfiI, NotI) and an apo(a) kringle-IV-specific probe. All enzymes detected the same size polymorphism in the kringle IV repeat domain of apo(a). With KpnI, 26 different alleles were identified among 156 unrelated subjects; these alleles ranged in size from 32kb to 189kb and differed by increments of 5.6kb, corresponding to one kringle IV unit. There was a perfect match between the size of the apo(a) DNA phenotypes and the size of apo(a) isoforms in plasma. The apo(a) DNA polymorphism was further used to estimate the magnitude of the apo(a) gene effect on Lp(a) levels by a sib-pair comparison approach based on 253 sib-pairs from 64 families. Intra-class correlation of log-transformed Lp(a) levels was high in sib-pairs sharing both parental alleles (r = 0.91), significant in those with one common allele (r = 0.31), and absent in those with no parental allele in common (r = 0.12). The data show that the intra-individual variability in Lp(a) levels is almost entirely explained by variation at the apo(a) locus but that only a fraction (46%) is explained by the DNA size polymorphism. This suggests further heterogeneity relating to Lp(a) levels in the apo(a) gene.  相似文献   

20.
We have developed a sensitve, high-resolution method for the analysis of the apolipoprotein(a) [apo(a)] isoforms using sodium dodecyl sulfate (SDS)-agarose/ gradient polyacrylamide gel electrophoresis. In an analysis of the genetic polymorphism of apo(a) isoforms and their relationship with plasma lipoprotein(a) [Lp(a)] levels in Japanese and Chinese, this method identified 25 different apo(a) isoforms and detected one or two apo(a) isoforms in more than 99.5% of the individuals tested. The apparent molecular weights of the apo(a) isoforms ranged from 370 kDa to 950 kDa, and 22 of the 25 different apo(a) isoforns had a higher molecular weight than of apo B-100. Studies on Japanese families confirmed the autosomal codominant segregation of apo(a) isoforms and the existence of a null allele at the apo(a) locus. The observed frequency distribution of apo(a) isoform phenotypes fit the expectations of the Hardy-Weinberg equilibrium in both the Japanese and Chinese populations. Our data indicate the existence of at least 26 alleles, including a null allele, at the apo(a) locus. The frequency distribution patterns of the apo(a) isoform alleles in Japanese and Chinese were similar to each other and also similar to that of apo(a) gene sizes reported in Caucasian American individuals. The average heterozygosity at the apo(a) locus was 92% in Japanese and 93% in Chinese. A highly significant inverse correlation was observed between plasma Lp(a) levels and the size of apo(a) isoforms in both the Japanese (r=-0.677, P=0.0001) and the Chinese (r=-0.703, P=0.0001). A highly skewed distribution of Lp(a) concentrations towards lower levels in the Japanese population may be explained by high frequencies of alleles encoding large apo(a) isoforms and the null allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号