首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kaur AP  Wilks A 《Biochemistry》2007,46(11):2994-3000
Heme uptake and utilization by pathogenic bacteria are critical for virulence and disease, since heme and heme proteins are a major source of iron within the host. Although the role of outer membrane heme receptors in this process has been extensively characterized at the genetic and biochemical level, the role of the cytoplasmic heme binding proteins is not yet clear. The Shigella dysenteriae cytoplasmic heme binding protein, ShuS, has previously been shown to promote utilization of heme as an iron source at low to moderate heme concentrations and to protect against heme toxicity at high heme concentrations. Herein, we provide evidence that ShuS of S. dysenteriae sequesters DNA non-sequence-specifically with a binding affinity of 3.6 microM as determined by fluorescence anisotropy studies. The ability to bind DNA was observed to be restricted to the apoprotein only. The molecular mass of the apo-ShuS-DNA complex was estimated to be approximately 700 kDa by size exclusion chromatography. Atomic force microscopy (AFM) revealed that apo-ShuS forms aggregates in the presence of DNA and provides a scaffolding matrix from which DNA is observed to loop outward. The AFM images of apo-ShuS-DNA complexes were strikingly similar to the AFM images of the stress-induced Escherichia coli protein, Dps, when complexed with DNA; however, unlike the Dps protein, ShuS failed to protect DNA against oxidative stress in vitro and in vivo. Since free heme can generate reactive oxygen species which are damaging to cellular DNA, the ability of ShuS to physically sequester DNA may provide a molecular basis for its role in preventing toxicity associated with high heme concentrations.  相似文献   

2.
Shigella dysenteriae serotype 1, a major cause of bacillary dysentery in humans, can use heme as a source of iron. Genes for the transport of heme into the bacterial cell have been identified, but little is known about proteins that control the fate of the heme molecule after it has entered the cell. The shuS gene is located within the heme transport locus, downstream of the heme receptor gene shuA. ShuS is a heme binding protein, but its role in heme utilization is poorly understood. In this work, we report the construction of a chromosomal shuS mutant. The shuS mutant was defective in utilizing heme as an iron source. At low heme concentrations, the shuS mutant grew slowly and its growth was stimulated by either increasing the heme concentration or by providing extra copies of the heme receptor shuA on a plasmid. At intermediate heme concentrations, the growth of the shuS mutant was moderately impaired, and at high heme concentrations, shuS was required for growth on heme. The shuS mutant did not show increased sensitivity to hydrogen peroxide, even at high heme concentrations. ShuS was also required for optimal utilization of heme under microaerobic and anaerobic conditions. These data are consistent with the model in which ShuS binds heme in a soluble, nontoxic form and potentially transfers the heme from the transport proteins in the membrane to either heme-containing or heme-degrading proteins. ShuS did not appear to store heme for future use.  相似文献   

3.
Burkhard KA  Wilks A 《Biochemistry》2008,47(31):7977-7979
The heme ATP binding cassette (ABC) transporter, ShuUV, of Shigella dysenteriae has been incorporated into proteoliposomes. Functional characterization of ShuUV revealed that ATP hydrolysis and transport of heme from the periplasmic binding protein, ShuT, to the cytoplasmic binding protein, ShuS, are coupled. Site-directed mutagenesis of ShuT residues proposed to be required for stabilization of the complex abolished heme transport. Furthermore, residues His-252 and His-262, located in the translocation channel of ShuU, were required for the release of heme from ShuT and translocation to ShuS. The initial functional characterization of an in vitro heme uptake system provides a platform for future spectroscopic studies.  相似文献   

4.
5.
6.
Ku protein, a relatively abundant nuclear protein associated with DNA of mammalian cells, is known to be a heterodimer with subunits of 85 and 72 kDa which binds in vitro to DNA ends and subsequently translocates along the molecule. The functional role played by this protein in the cell, however, remains to be elucidated. We have observed here that Ku protein, purified from cultured monkey cells, is the target of specific endoproteolysis in vitro, by which the 85 kDa subunit is cleaved at a precise site while the 72 kDa subunit remains intact. This cleavage releases an 18 kDa polypeptide and converts Ku protein into a heterodimer composed of the 72 kDa subunit associated with a 69 kDa fragment from the 85 kDa subunit. The proteolyzed form of Ku protein, denoted Ku′, has DNA binding properties similar to those of Ku protein. The proteolytic mechanism, which is inhibited by leupeptin and chymostatin, is extremely sensitive to ionic conditions, in particular to pH, being very active at pH 7.0 and completely inhibited at pH 8.0. In addition, cleavage occurs only when Ku protein is bound to DNA, not free in solution. We suggest that in vivo, such proteolysis might be necessary for Ku protein function at some stage of the cell cycle. © 1993 Wiley-Liss, Inc.  相似文献   

7.
8.
Yp20 is an abundant 20 kDa chromatin associated protein which has been shown to be related antigenically to genuine Hras products. Using Southwestern blots we have demonstrated that Yp20 is a DNA binding protein. It is also shown that protein Yp20 like protein HM (an abundant thermostable 20 kDa DNA binding protein isolated from mitochondria) and like the 21 kDa autonomously replicating sequence binding factor II (ABFII) is able to introduce superhelical turns into circular relaxed DNA in the presence of DNA topoisomerase I activity. We suggest that this protein may be important for chromatin structure and function.  相似文献   

9.
DNA binding properties of a 110 kDa nucleolar protein.   总被引:8,自引:2,他引:6       下载免费PDF全文
M Sapp  R Knippers    A Richter 《Nucleic acids research》1986,14(17):6803-6820
A single strand specific DNA binding protein was purified to homogeneity from calf thymus nucleoprotein. The monomeric protein is elongated in shape and has a molecular mass of 110 kDa. Since immunocytochemistry revealed that the protein is predominantly located in the nucleolus we refer to it as the 110 kDa nucleolar protein. The protein binds not only to single stranded DNA but also to single stranded RNA, including homopolymeric synthetic RNA. We have used the single stranded DNA binding properties of the 110 kDa protein in model studies to investigate its effects on the configuration of nucleic acid. Our results are: only 50-55 protein molecules are sufficient to saturate all binding sites on the 6408 nucleotides of phage fd DNA; protein binding cause a compaction of single stranded DNA; large nucleoprotein aggregates are formed in the presence of divalent cations; this is due to protein-protein interactions which occur at moderately high concentrations of magnesium-, calcium or manganese ions; the protein induces the reassociation of complementary nucleic acid sequences. We speculate that the 110 kDa protein performs similar reactions in vivo and may have a function related to the processing and packaging of preribosomal RNA.  相似文献   

10.
Human biliverdin reductase (hBVR) is a serine/threonine kinase that catalyzes reduction of the heme oxygenase (HO) activity product, biliverdin, to bilirubin. A domain of biliverdin reductase (BVR) has primary structural features that resemble leucine zipper proteins. A heptad repeat of five leucines (L(1)--L(5)), a basic domain, and a conserved alanine characterize the domain. In hBVR, a lysine replaces L(3). The secondary structure model of hBVR predicts an alpha-helix-turn-beta-sheet for this domain. hBVR translated by the rabbit reticulocyte lysate system appears on a nondenaturing gel as a single band with molecular mass of approximately 69 kDa. The protein on a denaturing gel separates into two anti-hBVR immunoreactive proteins of approximately 39.9 + 34.6 kDa. The dimeric form, but not purified hBVR, binds to a 100-mer DNA fragment corresponding to the mouse HO-1 (hsp32) promoter region encompassing two activator protein (AP-1) sites. The specificity of DNA binding is suggested by the following: (a) hBVR does not bind to the same DNA fragment with one or zero AP-1 sites; (b) a 56-bp random DNA with one AP-1 site does not form a complex with hBVR; (c) in vitro translated HO-1 does not interact with the 100-mer DNA fragment with two AP-1 sites; (d) mutation of Lys(143), Leu(150), or Leu(157) blocks both the formation of the approximately 69-kDa specimens and hBVR DNA complex formation; and (e) purified preparations of hBVR or hHO-1 do not bind to DNA with two AP-1 sites. The potential significance of the AP-1 binding is suggested by the finding that the response of HO-1, in COS cells stably transfected with antisense hBVR, with 66% reduced BVR activity, to superoxide anion (O(2)()) formed by menadione is attenuated, whereas induction by heme is not affected. We propose a role for BVR in the signaling cascade for AP-1 complex activation necessary for HO-1 oxidative stress response.  相似文献   

11.
Choi CY  Cerda JF  Chu HA  Babcock GT  Marletta MA 《Biochemistry》1999,38(51):16916-16924
Proteolysis of hemoglobin provides an essential nutrient source for the malaria parasite Plasmodium falciparum during the intraerythrocytic stage of the parasite's lifecycle. Detoxification of the liberated heme occurs through a unique heme polymerization pathway, leading to the formation of hemozoin. Heme polymerization has been demonstrated in the presence of P. falciparum histidine-rich protein 2 (PfHRP2) [Sullivan, D. J., Gluzman, I. Y., and Goldberg, D. E. (1996) Science 271, 219-221]; however, the molecular role that PfHRP2 plays in this polymerization is currently unknown. PfHRP2 is a 30 kDa protein composed of several His-His-Ala-His-His-Ala-Ala-Asp repeats and is present in the parasite food vacuole, the site of hemoglobin degradation and heme polymerization. We found that, at pH 7.0, PfHRP2 forms a saturable complex with heme, with a PfHRP2 to heme stoichiometry of 1:50. Spectroscopic characterization of heme binding by electronic absorption, resonance Raman, and EPR has shown that bound hemes share remarkably similar heme environments as >95% of all bound hemes are six-coordinate, low-spin, and bis-histidyl ligated. The PfHRP2-ferric heme complex at pH 5.5 (pH of the food vacuole) has the same heme spin state and coordination as observed at pH 7.0; however, polymerization occurs as heme saturation is approached. Therefore, formation of a PfHRP2-heme complex appears to be a requisite step in the formation of hemozoin.  相似文献   

12.
Replication of chloroplast DNA (ctDNA) in several plants and in Chlamydomonas reinhardii has been shown to occur by a double displacement loop (D-loop) mechanism and potentially also by a rolling circle mechanism. D-loop replication origins have been mapped in several species. Minimal replication origin sequences used as probes identified two potential binding proteins by southwestern blot analysis. A 28 kDa (apparent molecular weight by SDS-PAGE analysis) soybean protein has been isolated by origin sequence-specific DNA affinity chromatography from total chloroplast proteins. Mass spectrometry analysis identified this protein as the product of the soybean C6SY33 gene (accession number ACU14156), which is annotated as encoding a putative uncharacterized protein with a molecular weight of 25,897 Da, very near the observed molecular weight of the purified protein based on gel electrophoresis. Western blot analysis using an antibody against a homologous Arabidopsis protein indicates that this soybean protein is localized specifically in chloroplasts. The soybean protein shares some homology within a single-stranded DNA binding (SSB) domain of E. coli SSB and an Arabidopsis thaliana mitochondrial-localized SSB of about 21 kDa (mtSSB). However, the soybean protein induces a specific electrophoretic mobility shift only when incubated with a double-stranded fragment containing the previously mapped ctDNA replication oriA region. This protein has no electrophoretic mobility shift activity when incubated with single-stranded DNA. In contrast, the Arabidopsis mtSSB causes a mobility shift only with single-stranded DNA but not with the oriA fragment or with control dsDNA of unrelated sequence. These results suggest that the 26 kDa soybean protein is a specific origin binding protein that may be involved in initiation of ctDNA replication.  相似文献   

13.
A 42 kDa DNA-binding protein is associated with DNA polymerase-alpha-primase in pea (Pisum sativum). In a previous publication it was shown that the protein has strong preference for ds-ss junctions in DNA, including the cohesive termini generated by restriction endonucleases. In this paper it is shown that when the DNA-binding protein is added back to polymerase-primase, the protein stimulates the activity of the polymerase. The stimulation is particularly marked when M13 DNA, primed with a single sequencing primer or primed with oligoribonucleotides by the polymerase's associated primase activity, is used as a template. The stimulation of polymerase activity is not caused by an increase in processivity. These data lead to the suggestion that the 42 kDa DNA-binding protein is a primer-recognition protein.  相似文献   

14.
Xanthomonas sp. secretes an extracellular protein (Mr approximately 70+/-5 kDa) during growth on purified natural rubber [poly(1,4-cis-isoprene)] but not during growth on water-soluble carbon sources such as glucose or gluconate. A 1.3 kbp DNA fragment coding for an internal part of the structural gene of the 70 kDa protein was amplified by nested polymerase chain reaction (PCR) using amino acid sequence information obtained after Edman degradation of selected trypsin-generated peptides of the purified 70 kDa protein. The PCR product was used as a DNA probe to clone the complete structural gene from genomic DNA of Xanthomonas sp. The sequenced DNA contained a 2037 bp open reading frame which coded for a polypeptide of 678 amino acids (Mr 74.6 kDa) and which included the features of the N-terminal signal peptidase cleavage site (Mr approximately 72.9 kDa for the mature protein). Analysis of the amino acid sequence revealed the presence of two heme binding motifs (CXXCH) and a approximately 20 amino acids long sequence that is conserved in the Paracoccus denitrificans and Pseudomonas aeruginosa diheme cytochrome c peroxidases (CCPs). This region includes a histidine residue (H519 in Xanthomonas sp. and H265 and H271 in the Pseudomonas strains, respectively) that is essential for activity in CCPs and that is also conserved in other bacterial oxidases. Blast analysis confirmed the relatedness of the 70 kDa protein to heme-containing oxidases and suggested that it is a member of a new family of relatively large (approximately 500 to approximately 1000 amino acids) extracellular proteins with so far unknown function being only far related in amino acid sequence to P. denitrificans and P. aeruginosa CCPs.  相似文献   

15.
The heme chaperone CcmE is a novel protein that binds heme covalently via a histidine residue as part of its essential function in the process of cytochrome c biogenesis in many bacteria as well as plant mitochondria. In the continued absence of a structure of the holoform of CcmE, identification of the heme ligands is an important step in understanding the molecular function of this protein and the role of covalent heme binding to CcmE during the maturation of c-type cytochromes. In this work, we present spectroscopic data that provide insight into the ligation of the heme iron in the soluble domain of CcmE from Escherichia coli. Resonance Raman spectra demonstrated that one of the heme axial ligands is a histidine residue and that the other is likely to be Tyr134. In addition, the properties of the heme resonances of the holo-protein as compared with those of a form of CcmE with non-covalently bound heme provide evidence for the modification of one of the heme vinyl side chains by the protein, most likely the 2-vinyl group.  相似文献   

16.
17.
The heme uptake systems by which bacterial pathogens acquire and utilize heme have recently been described. Such systems may utilize heme directly from the host's hemeproteins or via a hemophore that sequesters and transports heme to an outer membrane receptor and subsequently to the translocating proteins by which heme is further transported into the cell. However, little is known of the heme binding and release mechanisms that facilitate the uptake of heme into the pathogenic organism. As a first step toward elucidating the molecular level events that drive heme binding and release, we have undertaken a spectroscopic and mutational study of the first purified periplasmic heme-binding protein (PBP), ShuT from Shigella dysenteriae. On the basis of sequence identity, the ShuT protein is most closely related to the class of PBPs typified by the vitamin B(12) (BtuF) and iron-hydroxamate (FhuD) PBPs and is a monomeric protein having a molecular mass of 28.5 kDa following proteolytic processing of the periplasmic signaling peptide. ShuT binds one b-type heme per monomer with high affinity and bears no significant homology with other known heme proteins. The resonance Raman, MCD, and UV-visible spectra of WT heme-ShuT are consistent with a five-coordinate high spin heme having an anionic O-bound proximal ligand. Site-directed ShuT mutants of the absolutely conserved Tyr residues, Tyr-94 (Y94A) and Tyr-228 (Y228F), which are found in all putative periplasmic heme-binding proteins, were subjected to UV-visible, resonance Raman, and MCD spectroscopic investigations of heme coordination environment and rates of heme release. The results of these experiments confirmed Tyr-94 as the only axial heme ligand and Tyr-228 as making a significant contribution to the stability of heme-loaded ShuT, albeit without directly interacting with the heme iron.  相似文献   

18.
19.
同型融合和蛋白质分选复合体(HOPS)由VPS11、VPS16、VPS18、VPS33、VPS39和VPS41这6种蛋白组成,能够通过膜融合机制来调节生物体内的膜泡运输。已有研究表明其可以作为融合因子来促进自噬体与溶酶体膜融合过程。为在体外确定HOPS复合体与自噬性SNARE蛋白STX17是否具有直接相互作用,首先利用PCR技术从已有质粒中扩增得到6种基因的编码序列,将其连接至pGEX 4T-1-GST或pET-His-NusA原核表达载体上,经菌落PCR初步鉴定和DNA测序无误后成功构建6种原核表达重组质粒并转化至大肠杆菌BL21(DE3);利用谷胱甘肽琼脂糖树脂与镍柱对重组蛋白进行纯化,烟草蚀纹病毒(TEV)蛋白酶酶切掉GST或His-NusA标签,得到分子量约为105 kDa的HA-VPS11蛋白、97 kDa的Flag-VPS16蛋白、108 kDa的HA-VPS18蛋白、70 kDa的Flag-VPS33蛋白、97 k Da的HA-VPS39蛋白和98 kDa的Flag-VPS41蛋白;通过体外GST pull-down技术对6种蛋白的功能进行验证,证实自噬性SNARE蛋白STX17和6种重组蛋白在体外均具有直接相互作用,为深入探究HOPS复合体参与自噬体与溶酶体膜融合过程中的功能及作用机制奠定实验基础。  相似文献   

20.
A polypeptide of approximately 11 000 daltons (11 kDa protein) encoded by an open reading frame (10.9 ORF) from the virion sense of maize streak virus (MSV) DNA has been detected among the products of in vitro translation reactions programmed with RNA from infected maize plants and also in total protein extracts from infected leaves. The 11 kDa protein has not been detected in virions and is therefore proposed to have a nonstructural role.Viral DNA with an additional in-frame translation stop codon in the 10.9 ORF was not infectious when transmitted to maize plants via Agrobacterium tumefaciens agroinfection, suggesting that the 10.9 ORF may be essential for virus function. Computer comparison data show that equivalent ORFs in wheat dwarf virus (WDV) and digitaria streak virus (DSV) have some sequences in common with the 10.9 ORF of MSV. Further-more, the absence of similar sequences in geminiviruses which infect dicotyledonous plants suggests that the 11 kDa protein and its putative homologs in WDV and DSV have a function necessary only for those geminiviruses which infect the Gramineae.The significance of the 11 kDa protein in relation to expression of the virion sense DNA of MSV is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号