首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
高温和H2O2诱导酵母细胞产生活性衍生物的研究   总被引:5,自引:0,他引:5  
对高温和H2O2应激条件下产生活性酵母细胞衍生物(Live Yeast Cell Derivative,简称LYCD)进行了研究。结果表明:低剂量的预处理(37℃和0.2mmol/LH2O2)能够增加细胞内谷胱甘肽(GSH)含量,提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性。两种预处理均可以诱导对致死浓度H2O2的抗性。通过37℃和0.2mmol/LH2O2处理酵母细胞后,提取LYCD并添加到酵母细胞培养液中,发现细胞在致死浓度H2O2作用下的存活率明显提高,说明温度和H2O2刺激酵母细胞形成的LYCD对细胞氧化具有抵抗作用。  相似文献   

2.
H2O2应激条件下的活性酵母细胞衍生物的研究   总被引:4,自引:0,他引:4  
对过氧化氢(H2O2)应激条件下产生的活性酵母衍生物(Live Yeast Cell Derivative,LYCD)进行了研究,结果表明:LYCD对细胞具有明显的促呼吸作用,其作用大小与制备LYCD过程中所加入的H2O2的刺激强度有关。另外,对LYCD中两种重要的抗氧剂-还原型谷胶甘肽(GSH)和超氧化物歧化酶(SOD)的测定分析结果显示:在H2O2的作用下,应激反应发生15min时,LY-CD中SOD的比活力最强,发生30min时,GSH的含量最高,不同的应激产物有各自产生的最佳时间。  相似文献   

3.
对高温和H2O2 应激条件下产生活性酵母细胞衍生物 (Live Yeast Cell Derivative ,简称LYCD)进行了研究。结果表明 :低剂量的预处理 ( 37℃和 0.2mmol LH2O2 )能够增加细胞内谷胱甘肽 (GSH)含量 ,提高超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)活性。两种预处理均可以诱导对致死浓度H2O2 的抗性。通过 37℃和 0.  相似文献   

4.
目的:研究黄芪苷Ⅳ(AST)是否通过细胞外信号调节激酶1/2(ERK1/2)通路发挥对H2O2诱导的H9c2细胞氧化损伤的保护作用。方法:用200μmoL/L的H2O2处理细胞6h,采用MTT法检测细胞存活率,建立H2O2诱导的H9c2细胞氧化损伤模型;比色法测定细胞培养液中乳酸脱氢酶(LDH)活性、总超氧化物歧化酶(T—SOD)和锰超氧化物歧化酶(Mn—SOD)活力以及丙二醛(MDA)含量;Western blot检测H9c2细胞ERK1/2蛋白的磷酸化水平。结果:在H2O2浓度为200μmol/L作用6h条件下,细胞存活率降低程度适中,实验结果重复性好,确定后续实验采用200μmol/L H2O2作用6h建立模型。与H2O2组比较,10mg/L及20mg/L AST均显著提高细胞存活率(P〈0.01),使细胞培养液中LDH活性显著降低(P〈0.01),T—SOD及Mn—SOD活力显著提高(P〈0.01),MDA含量显著降低(P〈0.01)。10mg/L及20mg/L AST均显著增加H2O2损伤的H9c2细胞p—ERK1/2蛋白的表达(P〈0.01),当用PD98059(ERK1/2的抑制剂)预处理后,AST的作用则被取消。结论:黄芪苷Ⅳ可以通过ERK1/2通路发挥对H2O2诱导的H9c2细胞氧化损伤的保护作用。  相似文献   

5.
活性酵母细胞衍生物的初步研究*   总被引:4,自引:0,他引:4  
活性酵母细胞衍生物(Live Yeast Cell Derivative,简称LYCD)是酵母细胞在人为控制的伤害条件下产生的具有促进细胞呼吸和修复作用的保护性物质。研究结果表明:LYCD对细胞具有明显的促呼吸作用;在过氧化氢的作用下,应激反应发生15min时,所制备的LYCD具有最强的促呼吸作用;发生30min时,LYCD中还原型谷胱甘肽(GSM)的含量最高。对比实验还表明:在不同的应激条件下所制备的LYCD,具有相似的生物活性。  相似文献   

6.
低温对渗透胁迫下蓝藻固氮的影响   总被引:2,自引:0,他引:2  
蓝藻经低温(0~4℃)预处理后,其在渗压脱水剂聚乙二醇(PEG)胁迫下的固氮活性下降进一步加剧。能源供应受限(光强减弱、暗处理)、厌氧(Ar或N2中)环境和分子氧下,下降程度更烈,而改善能源和还原剂以及合成固氮酶蛋白所需的物质供应(提高CO2浓度、CO2和N2以及H2和O2的加合、添加外源蔗糖)时即明显有所缓和。  相似文献   

7.
目的:探讨锰铁离子对啤酒废酵母产生活性酵母细胞衍生物(LYCD)的活力影响.方法:以啤涌废酵母为研究对象、以废液为培养基,在生长抑制浓度下,分别研究了锰、铁离子的作用浓度与时间对啤酒废酵母产生LYCD的活力影响.结果:废酵母在废液中培养28h可达到对数生长期;当废液中Mn~(2+)、Fe~(3+)浓度分别达到200mg/L、50mg/L时可对废酵母产生生长抑制;当Mn~(2+)、Fe~(3+)的作用浓度分别为220mg/L、60mg/L、应激时间分别是25、45min时,啤酒废酵母产的LYCD活性强.结论:应激培养基中金属离子Mn~(2+)、Fe~(3+)达到一定浓度,在一定时间下可使废酵母产生强活力的LYCD.  相似文献   

8.
目的:外源性给予过氧化氢(H2O2)诱导构建人视网膜色素上皮细胞(Retinal pigment epithelial,RPE)细胞氧化损伤模型,探究H2O2的最佳建模浓度,并探讨叶黄素对H2O2诱导人RPE细胞氧化损伤的保护作用。方法:本研究以人RPE细胞为实验对象。不同浓度H2O2(0、50、100、200、400、600μmol/L)处理RPE细胞1 h后,观察细胞形态的改变,并测定细胞生存率和细胞内ROS浓度进而确定H2O2的最佳建模浓度。不同剂量叶黄素(1、2.5、5、7.5、10μg/mL)预处理RPE细胞24h,随后给予100μmol/L H2O2作用1h,测定各组细胞生存率和细胞内活性氧(ROS)浓度,从而评价叶黄素对RPE细胞氧化损伤的作用。结果:H2O2作用后,随H2O2浓度的增加,RPE细胞生存率逐步下降;细胞内ROS浓度随H2O2的浓度增加而显著升高。与损伤对照组相比,各叶黄素处理组RPE细胞生存率显著升高,同时细胞内ROS浓度显著下降。结论:H2O2可导致RPE细胞出现氧化应激损伤,细胞ROS含量显著增加。叶黄素干预后可显著减缓H2O2诱导的氧化应激反应,提示其可通过提高RPE细胞的生存率、抑制细胞内ROS浓度,保护RPE细胞免受氧化损伤,从而对年龄相关性黄斑变性等眼部退行性疾病起到预防和减缓作用。  相似文献   

9.
水杨酸提高香蕉幼苗的抗冷性与H2O2代谢有关   总被引:20,自引:0,他引:20  
探讨了水杨酸(salicylic acid,SA)提高香蕉幼苗抗冷性的可能机理。在常温下(30/22℃)用不同浓度(0—3.5mmol/L)的SA水溶液喷洒叶片1d,置于7℃低温下冷胁迫3d,随后于常温下恢复2d后测定电解质泄漏率,结果表明:SA0.3~0.9mmol/L能显著提高香蕉幼苗的抗冷性,以0.5mmol/L效果最佳。若把冷胁迫温度降到5℃,SA0.5mmol/L预处理可显著减少幼苗叶片的萎蔫面积。但当SA浓度高于1.5mmol/L时,恢复期间的电解质泄漏甚至高于对照(蒸馏水处理),表明它们加剧了冷害。SA提高香蕉幼苗的抗冷性可能需要H2O2的参与:1)SA0.5mmol/L常温处理诱导了H2O2的积累和活性氧造成的膜脂过氧化——三氯乙酸反应物质(TBARS)的增加,这可能与H2O2的清除酶——过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性的受抑和H2O2的产生酶—超氧化物歧化酶(SOD)活性几乎不受影响有关;2)外源H2O2(1.5—2.5mmoL/L)也能显著降低低温胁迫期间的电解质泄漏,表明也能提高抗冷性;3)而用H2O2的捕捉剂——二甲基硫脲(DMTU)可明显抑制SA诱导的抗冷性;4)在低温胁迫与恢复期间,SA预处理明显提高了CAT和APX的活性,抑制了H2O2与TBARS的快速上升。  相似文献   

10.
目的:探讨蓝莓提取物对过氧化氢致大鼠海马神经元氧化应激损伤的减缓作用。方法:将培养7d的海马神经细胞分为8组:①过氧化氢组(H2O2):培养液中加入50μmol/L的H2O2,作用24h。②不同剂量蓝莓提取物预处理组(BE+H2O2):在加入H2O2前24h,分别加入0.01、0.1、1.0、10.0、20.0和40.0μg/mlBE。③空白对照组(Control):处理步骤同上组,但每次处理物质均为等量的培养液。通过测定细胞存活率和上清液中乳酸脱氢酶(LDH)的活性确定减轻海马神经元损伤的蓝莓提取物的适宜浓度。并检测细胞内丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性以及细胞凋亡率的变化。结果:①蓝莓提取物组(0.1,1.0和10.0μg/mlBE)LDH活性显著低于H2O2组,细胞存活率由H2O2组的57.44%分别上升至78.42%、87.71%、72.40%;1μg/ml蓝莓提取物组对H2O2诱导的海马神经细胞氧化应激损伤的保护作用最好。②1μg/ml蓝莓提取物组海马神经细胞培养上清液中MDA含量及细胞凋亡率显著低于H2O2组,SOD活性显著高于H2O2组。结论:适宜剂量的蓝莓提取物对氧化应激损伤的海马神经元有一定的保护作用,其机制可能与抑制海马神经元凋亡、增强神经细胞的抗氧化功能有关。  相似文献   

11.
Thermotolerance is improved by heat stress (HS) acclimation, and the thermotolerance level is “remembered” by plants. However, the underlying signalling mechanisms remain largely unknown. Here, we showed NADPH oxidase‐mediated H2O2 (NADPH‐H2O2), and chloroplast‐H2O2 promoted the sustained expression of HS‐responsive genes and programmed cell death (PCD) genes, respectively, during recovery after HS acclimation. When spraying the NADPH oxidase inhibitor, diphenylene iodonium, after HS acclimation, the NADPH‐H2O2 level significantly decreased, resulting in a decrease in the expression of HS‐responsive genes and the loss of maintenance of acquired thermotolerance (MAT). In contrast, compared with HS acclimation, NADPH‐H2O2 declined but chloroplast‐H2O2 further enhanced during recovery after HS over‐acclimation, resulting in the reduced expression of HS‐responsive genes and substantial production of PCD. Notably, the further inhibition of NADPH‐H2O2 after HS over‐acclimation also inhibited chloroplast‐H2O2, alleviating the severe PCD and surpassing the MAT of HS over‐acclimation treatment. Due to the change in subcellular H2O2 after HS acclimation, the tomato seedlings maintained a constant H2O2 level during recovery, resulting in stable and lower total H2O2 levels during a tester HS challenge conducted after recovery. We conclude that tomato seedlings increase their MAT by enhancing NADPH‐H2O2 content and controlling chloroplast‐H2O2 production during recovery, which enhances the expression of HS‐responsive genes and balances PCD levels, respectively.  相似文献   

12.
12 d龄的春小麦幼苗在 1 mmol· L- 1及 1 0 mmol· L- 1H2 O2 的胁迫锻炼过程中 ,质膜透性增大 ,O- · 及 H2 O2 含量增多 ,CAT活性升高 ,叶绿素含量降低 ,低浓度 H2 O2 胁迫使SOD活性上升 ,高浓度时却使其活性下降。经过 H2 O2 胁迫锻炼后的小麦遭受干旱胁迫时 ,叶绿素含量、SOD活性、CAT活性均高于对照组 ,而质膜透性、O- · 及 H2 O2 含量却低于对照组。表明 H2 O2 胁迫锻炼 ,提高了小麦幼苗的抗氧化能力 ,增强了其抗旱性  相似文献   

13.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage.  相似文献   

14.
《Developmental cell》2022,57(15):1883-1898.e5
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

15.
Electrophilic stress caused by lipid peroxidation products such as 4-hydroxynonenal (4-HNE) and/or related compounds may contribute to aging. The major mode of 4-HNE metabolism involves glutathione conjugation catalyzed by specialized glutathione transferases. We have previously shown that glutathione transferase CeGSTP2-2, the product of the Caenorhabditis elegans gst-10 gene, has the ability to conjugate 4-HNE, and that its overexpression extends lifespan of C. elegans. We now demonstrate that the expression level of CeGSTP2-2 correlates highly with lifespan in a series of hypomorphic daf-2 mutants of C. elegans. The overexpression of CeGSTP2-2 in daf-2 is abrogated in daf-16; daf-2 mutants, indicating that expression of the gst-10 gene is modulated by insulin-like growth factor signaling. To determine whether the relationship between CeGSTP2-2 and lifespan is causal, we used RNAi to knock down CeGSTP2-2. Treatment with gst-10-specific dsRNA decreased CeGSTP2-2 protein in wild-type N2 and in daf-2 strains to an approximately equal level. The ability to conjugate 4-HNE was similarly decreased by RNAi, suggesting that the increment of that activity in daf-2 over N2 is due largely to the overexpression of CeGSTP2-2. RNAi-mediated knock-down of CeGSTP2-2 led to an increased susceptibility to 4-HNE, paraquat, and heat shock, and to a shortening of lifespan by 13% in both N2 and daf-2 strains. These results indicate that CeGSTP2-2 significantly contributes to the maintenance of the soma, and that this function is augmented in daf-2 mutants concordantly with other longevity assurance genes, probably via insulin-like growth factor signaling.  相似文献   

16.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

17.
In order to test the stress hypothesis of allelopathy of Reigosa et al. (1999, 2002) , the combined action of a well-established allelochemical compound (2-3 H -benzoxazolinone, BOA) and a common abiotic stress (salt stress) were investigated in lettuce ( Lactuca sativa L.). In a previous study ( Baerson et al. 2005 ), we demonstrated that the primary effects of BOA are related to the expression of genes involved in detoxification and stress responses, which might serve to simultaneously alleviate biotic and abiotic stresses. Through analysis of the same physiological and biochemical parameters previously studied for BOA alone ( Sánchez-Moreiras & Reigosa 2005 ), we observed specific effects of salt stress alone, as well as for the two stresses together (BOA and salt). This paper demonstrates that plants showing tolerance to salt stress (reduced stomatal density, increased proline content, higher K+ concentration, etc .) become salt sensitive (markedly low Ψw values, high putrescine content, increased lipid peroxidation, etc .) when simultaneously treated with the allelochemical BOA. We also report additional information on the mechanisms of action of BOA, and general stress responses in this plant species.  相似文献   

18.
Recently, endoplasmic reticulum (ER) stress responses have been suggested to play important roles in maintaining various cellular functions and to underlie many tissue dysfunctions. In this study, we first identified cysteine-rich with EGF-like domains 2 (CRELD2) as an ER stress-inducible gene by analyzing a microarray analysis of thapsigargin (Tg)-inducible genes in Neuro2a cells. CRELD2 mRNA is also shown to be immediately induced by treatment with the ER stress-inducing reagents tunicamycin and brefeldin A. In the genomic sequence of the mouse CRELD2 promoter, we found a typical ER stress responsible element (ERSE), which is well conserved among various species. Using a luciferase reporter analyses, we demonstrated that the ERSE in mouse CRELD2 is functional and responds to Tg and ATF6-overexpression. Each mutation of ATF6- or NF-Y-binding sites in the ERSE of the mouse CRELD2 promoter dramatically decreased both the basal activity and responsiveness toward the ER stress stimuli. Our study suggests that CRELD2 could be a novel mediator in regulating the onset and progression of various ER stress-associated diseases.  相似文献   

19.
Measurement of the changes in CO2 uptake by single leaves following the abrupt onset of darkness were made on sugarbeets (Beta vulgaris L.) and (Phaseolus vulgaris L.) The shape of the CO2 dark response curve was analyzed with respect to the reaction kinetics of CO2, RuP2 and RuP2 carboxylase. It was concluded that the net uptake of CO2 in the dark from a 1% O2 atmosphere can be approximately related to the pool size of the RuP2 substrate in the chloroplasts of C3 plants. This information was combined with CO2 levels and decay rates of the response curves to infer changes in carboxylase activity. Preliminary data are presented showing the relative concentration changes in RuP2 as light intensity decreases and as water stress increases. The method may prove useful in studies of plant response to environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号