首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosystem II (PSII) light-harvesting system carries out two essential functions, the efficient collection of light energy for photosynthesis, and the regulated dissipation of excitation energy in excess of that which can be used. This dual function requires structural and functional flexibility, in which light-harvesting proteins respond to an external signal, the thylakoid DeltapH, to induce feedback control. This process, referred to as non-photochemical quenching (NPQ) depends upon the xanthophyll cycle and the PsbS protein. In nature, NPQ is heterogeneous in terms of kinetics and capacity, and this adapts photosynthetic systems to the specific dynamic features of the light environment. The molecular features of the thylakoid membrane which may enable this flexibility and plasticity are discussed.  相似文献   

2.
Structural proteomics: a tool for genome annotation   总被引:1,自引:0,他引:1  
In any newly sequenced genome, 30% to 50% of genes encode proteins with unknown molecular or cellular function. Fortunately, structural genomics is emerging as a powerful approach of functional annotation. Because of recent developments in high-throughput technologies, ongoing structural genomics projects are generating new structures at an unprecedented rate. In the past year, structural studies have identified many new structural motifs involved in enzymatic catalysis or in binding ligands or other macromolecules (DNA, RNA, protein). The efficiency by which function is deduced from structure can be further improved by the integration of structure with bioinformatics and other experimental approaches, such as screening for enzymatic activity or ligand binding.  相似文献   

3.
4.
Measuring in a quantitative, statistical sense the degree to which structural and functional information can be "transferred" between pairs of related protein sequences at various levels of similarity is an essential prerequisite for robust genome annotation. To this end, we performed pairwise sequence, structure and function comparisons on approximately 30,000 pairs of protein domains with known structure and function. Our domain pairs, which are constructed according to the SCOP fold classification, range in similarity from just sharing a fold, to being nearly identical. Our results show that traditional scores for sequence and structure similarity have the same basic exponential relationship as observed previously, with structural divergence, measured in RMS, being exponentially related to sequence divergence, measured in percent identity. However, as the scale of our survey is much larger than any previous investigations, our results have greater statistical weight and precision. We have been able to express the relationship of sequence and structure similarity using more "modern scores," such as Smith-Waterman alignment scores and probabilistic P-values for both sequence and structure comparison. These modern scores address some of the problems with traditional scores, such as determining a conserved core and correcting for length dependency; they enable us to phrase the sequence-structure relationship in more precise and accurate terms. We found that the basic exponential sequence-structure relationship is very general: the same essential relationship is found in the different secondary-structure classes and is evident in all the scoring schemes. To relate function to sequence and structure we assigned various levels of functional similarity to the domain pairs, based on a simple functional classification scheme. This scheme was constructed by combining and augmenting annotations in the enzyme and fly functional classifications and comparing subsets of these to the Escherichia coli and yeast classifications. We found sigmoidal relationships between similarity in function and sequence, with clear thresholds for different levels of functional conservation. For pairs of domains that share the same fold, precise function appears to be conserved down to approximately 40 % sequence identity, whereas broad functional class is conserved to approximately 25 %. Interestingly, percent identity is more effective at quantifying functional conservation than the more modern scores (e.g. P-values). Results of all the pairwise comparisons and our combined functional classification scheme for protein structures can be accessed from a web database at http://bioinfo.mbb.yale.edu/alignCopyright 2000 Academic Press.  相似文献   

5.
6.
Computational prediction of protein structures is a difficult task, which involves fast and accurate evaluation of candidate model structures. We propose to enhance single‐model quality assessment with a functionality evaluation phase for proteins whose quantitative functional characteristics are known. In particular, this idea can be applied to evaluation of structural models of ion channels, whose main function ‐ conducting ions ‐ can be quantitatively measured with the patch‐clamp technique providing the current–voltage characteristics. The study was performed on a set of KcsA channel models obtained from complete and incomplete contact maps. A fast continuous electrodiffusion model was used for calculating the current–voltage characteristics of structural models. We found that the computed charge selectivity and total current were sensitive to structural and electrostatic quality of models. In practical terms, we show that evaluating predicted conductance values is an appropriate method to eliminate models with an occluded pore or with multiple erroneously created pores. Moreover, filtering models on the basis of their predicted charge selectivity results in a substantial enrichment of the candidate set in highly accurate models. Tests on three other ion channels indicate that, in addition to being a proof of the concept, our function‐oriented single‐model quality assessment method can be directly applied to evaluation of structural models of some classes of protein channels. Finally, our work raises an important question whether a computational validation of functionality should be included in the evaluation process of structural models, whenever possible. Proteins 2016; 84:217–231. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The genome sciences face the challenge to characterize structure and function of a vast number of novel genes. Sequence search techniques are used to infer functional and structural information from similarities to experimentally characterized genes or proteins. The persistent goal is to refine these techniques and to develop alternative and complementary methods to increase the range of reliable inference.Here, we focus on the structural and functional assignments that can be inferred from the known three-dimensional structures of proteins. The study uses all structures in the Protein Data Bank that were known by the end of 1997. The protein structures released in 1998 were then characterized in terms of functional and structural similarity to the previously known structures, yielding an estimate of the maximum amount of information on novel protein sequences that can be obtained from inference techniques.The 147 globular proteins corresponding to 196 domains released in 1998 have no clear sequence similarity to previously known structures. However, 75 % of the domains have extensive structure similarity to previously known folds, and most importantly, in two out of three cases similarity in structure coincides with related function. In view of this analysis, full utilization of existing structure data bases would provide information for many new targets even if the relationship is not accessible from sequence information alone. Currently, the most sophisticated techniques detect of the order of one-third of these relationships.  相似文献   

8.
Summary A model of segregation distortion is assumed in which the action of the distorter when heterozygous is to render dysfunctional those gametes that carry its allele. Two gamete killers when homozygous are assumed to distort each other. Individuals that carry the gamete killer suffer a reduction in the number of functional gametes they produce, but this deleterious effect is counterbalanced by the segregation ratio advantage of the distorter. The dynamics of such a system are analyzed in terms of a generalized fecundity function, which is defined as a function which assigns to any individual his relative fecundity in terms of the fraction of functional gametes he produces. Three general classes of fecundity functions are considered: (a) proportionality, in which the relative fecundity of an individual is proportional to the fraction of functional gametes he produces, (b) compensation, in which the relative fecundity of an individual is always greater than the fraction of functional gametes he produces, and (c) mass action, in which the relative fecundity of an individual is less than or greater than the fraction of functional gametes he produces according to whether the fraction of functional gametes is less than or greater than some threshold. In case (a) all gamete killers are always at neutral equilibria and gene frequency changes at the locus are governed by random drift. In case (b) all gamete killers will be fixed if the fecundity function is such that its second derivative is negative, whenever its argument is greater than one-half. And in case (c) some gamete killers will converge to stable equilibria, others will be fixed. If a gamete killer is homozygous lethal it will almost always converge to a stable equilibrium.This work was made possible by grant number GB-18786 from the National Science Foundation.  相似文献   

9.
The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier.  相似文献   

10.
Protein function is mediated by different amino acid residues, both their positions and types, in a protein sequence. Some amino acids are responsible for the stability or overall shape of the protein, playing an indirect role in protein function. Others play a functionally important role as part of active or binding sites of the protein. For a given protein sequence, the residues and their degree of functional importance can be thought of as a signature representing the function of the protein. We have developed a combination of knowledge- and biophysics-based function prediction approaches to elucidate the relationships between the structural and the functional roles of individual residues and positions. Such a meta-functional signature (MFS), which is a collection of continuous values representing the functional significance of each residue in a protein, may be used to study proteins of known function in greater detail and to aid in experimental characterization of proteins of unknown function. We demonstrate the superior performance of MFS in predicting protein functional sites and also present four real-world examples to apply MFS in a wide range of settings to elucidate protein sequence-structure-function relationships. Our results indicate that the MFS approach, which can combine multiple sources of information and also give biological interpretation to each component, greatly facilitates the understanding and characterization of protein function.  相似文献   

11.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.  相似文献   

12.
The proteins composed of short polypeptides (about 70 amino acid residues) representing the following functional groups (according to PDB notation): growth hormones, serine protease inhibitors, antifreeze proteins, chaperones and proteins of unknown function, were selected for structural and functional analysis. Classification based on the distribution of hydrophobicity in terms of deficiency/excess as the measure of structural and functional specificity is presented. The experimentally observed distribution of hydrophobicity in the protein body is compared to the idealized one expressed by a three-dimensional Gauss function. The differences between these two distributions reveal the specificity of structural/functional characteristics of the protein. The residues of hydrophobicity deficiency versus the idealized distribution are assumed to indicate cavities with the potential to bind ligands, while the residues of hydrophobicity excess are interpreted as potentially participating in protein-protein complexation. The distribution of hydrophobicity irregularity seems to be specific for particular structures and functions of proteins. A comparative analysis of such profiles is carried out to identify the potential biological activity of proteins of unknown function.  相似文献   

13.
When we construct mathematical models to represent biological systems, there is always uncertainty with regards to the model specification—whether with respect to the parameters or to the formulation of model functions. Sometimes choosing two different functions with close shapes in a model can result in substantially different model predictions: a phenomenon known in the literature as structural sensitivity, which is a significant obstacle to improving the predictive power of biological models. In this paper, we revisit the general definition of structural sensitivity, compare several more specific definitions and discuss their usefulness for the construction and analysis of biological models. Then we propose a general approach to reveal structural sensitivity with regards to certain system properties, which considers infinite-dimensional neighbourhoods of the model functions: a far more powerful technique than the conventional approach of varying parameters for a fixed functional form. In particular, we suggest a rigorous method to unearth sensitivity with respect to the local stability of systems’ equilibrium points. We present a method for specifying the neighbourhood of a general unknown function with \(n\) inflection points in terms of a finite number of local function properties, and provide a rigorous proof of its completeness. Using this powerful result, we implement our method to explore sensitivity in several well-known multicomponent ecological models and demonstrate the existence of structural sensitivity in these models. Finally, we argue that structural sensitivity is an important intrinsic property of biological models, and a direct consequence of the complexity of the underlying real systems.  相似文献   

14.
15.
The characterization of biological function among newly determined protein structures is a central challenge in structural genomics. One class of computational solutions to this problem is based on the similarity of protein structure. Here, we implement a simple yet efficient measure of protein structure similarity, the contact metric. Even though its computation avoids structural alignments and is therefore nearly instantaneous, we find that small values correlate with geometrical root mean square deviations obtained from structural alignments. To test whether the contact metric detects functional similarity, as defined by Gene Ontology (GO) terms, it was compared in large-scale computational experiments to four other measures of structural similarity, including alignment algorithms as well as alignment independent approaches. The contact metric was the fastest method and its sensitivity, at any given specificity level, was a close second only to Fast Alignment and Search Tool--a structural alignment method that is slower by three orders of magnitude. Critically, nearly 40% of correct functional inferences by the contact metric were not identified by any other approach, which shows that the contact metric is complementary and computationally efficient in detecting functional relationships between proteins. A public 'Contact Metric Internet Server' is provided.  相似文献   

16.
Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are ‘structural’ (induced subgraphs) and ‘functional’ (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.  相似文献   

17.
One of the most important tasks of modern bioinformatics is the development of computational tools that can be used to understand and treat human disease. To date, a variety of methods have been explored and algorithms for candidate gene prioritization are gaining in their usefulness. Here, we propose an algorithm for detecting gene-disease associations based on the human protein-protein interaction network, known gene-disease associations, protein sequence, and protein functional information at the molecular level. Our method, PhenoPred, is supervised: first, we mapped each gene/protein onto the spaces of disease and functional terms based on distance to all annotated proteins in the protein interaction network. We also encoded sequence, function, physicochemical, and predicted structural properties, such as secondary structure and flexibility. We then trained support vector machines to detect gene-disease associations for a number of terms in Disease Ontology and provided evidence that, despite the noise/incompleteness of experimental data and unfinished ontology of diseases, identification of candidate genes can be successful even when a large number of candidate disease terms are predicted on simultaneously. Availability: www.phenopred.org.  相似文献   

18.

Background  

Protein sequence insertions/deletions (indels) can be introduced during evolution or through alternative splicing (AS). Alternative splicing is an important biological phenomenon and is considered as the major means of expanding structural and functional diversity in eukaryotes. Knowledge of the structural changes due to indels is critical to our understanding of the evolution of protein structure and function. In addition, it can help us probe the evolution of alternative splicing and the diversity of functional isoforms. However, little is known about the effects of indels, in particular the ones involving core secondary structures, on the folding of protein structures. The long term goal of our study is to accurately predict the protein AS isoform structures. As a first step towards this goal, we performed a systematic analysis on the structural changes caused by short internal indels through mining highly homologous proteins in Protein Data Bank (PDB).  相似文献   

19.
Chatterjee  D; Khoo  KH 《Glycobiology》1998,8(2):113-120
Detailed structural and functional studies over the last decade have led to current recognition of the mycobacterial lipoarabinomannan (LAM) as a phosphatidylinositol anchored lipoglycan with diverse biological activities. Fatty acylation has been demonstrated to be essential for LAM to maintain its functional integrity although the focus has largely been on the arabinan motifs and the terminal capping function. It has recently been shown that the mannose caps may be involved not only in attenuating host immune response, but also in mediating the binding of mycobacteria to and subsequent entry into macrophages. This may further be linked to an intracellular trafficking pathway through which LAM is thought to be presented by CD1 to subsets of T-cells. The implication of LAM as major histocompatibility complex (MHC)-independent T-cell epitope and the ensuing immune response is an area of intensive studies. Another recent focus of research is the biosynthesis of arabinan which has been shown to be inhibitable by the anti- tuberculosis drug, ethambutol. The phenomenon of truncated LAM as synthesized by ethambutol resistant strains provides an invaluable handle for dissecting the array of arabinosyltransferases involved, as well as generating much needed structural variants for further structural and functional studies. It is hoped that with more systematic investigations based on clinical isolates and human cell lines, the true significance of LAM in the immunopathogenesis of tuberculosis and leprosy can eventually be explained.   相似文献   

20.
Although DNA is iconized as a straight double helix, it does not exist in this canonical form in biological systems. Instead, it is characterized by sequence dependent structural and dynamic deviations from the monotonous regularity of the canonical B-DNA. Despite the complexity of the system, we showed that DNA structural and dynamics large-scale properties can be predicted starting from the simple knowledge of nucleotide sequence by adopting a statistical approach. The paper reports the statistical analysis of large pools of different prokaryotic genes in terms of the sequence-dependent curvature and flexibility. Conserved features characterize the regions close to the Start Translation Site, which are related to their function in the regulation system. In addition, regular patterns with three-fold periodicity were found in the coding regions. They were reproduced in terms of the nucleotide frequency expected on the basis of the genetic code and the pertinent occurrence of the aminoacid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号