首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A centromere (CEN) in Saccharomyces cerevisiae consists of approximately 150 bp of DNA and contains 3 conserved sequence elements: a high A + T region 78-86 bp in length (element II), flanked on the left by a conserved 8-bp element I sequence (PuTCACPuTG), and on the right by a conserved 25-bp element III sequence. We have carried out a structure-function analysis of the element I and II regions of CEN3 by constructing mutations in these sequences and subsequently determining their effect on mitotic and meiotic chromosome segregation. We have also examined the mitotic and meiotic segregation behavior of ARS plasmids containing the structurally altered CEN3 sequences. Replacing the periodic tracts of A residues within element II with random A + T sequences of equal length increases the frequency of mitotic chromosome nondisjunction only 4-fold; whereas, reducing the A + T content of element II while preserving the length results in a 40-fold increase in the frequence of chromosome nondisjunction. Structural alterations in the element II region that do not decrease the overall length have little effect on the meiotic segregation behavior of the altered chromosomes. Centromeres containing a deletion of element I or a portion of element II retain considerable mitotic activity, yet plasmids carrying these same mutations segregate randomly during meiosis I, indicating these sequences to be essential for maintaining attachment of the replicated sister chromatids during the first meiotic division. The presence of an intact element I sequence properly spaced from the element III region is absolutely essential for proper meiotic function of the centromere.  相似文献   

2.
A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.  相似文献   

3.
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.  相似文献   

4.
Saccharomyces cerevisiae centromeres contain a conserved region ranging from 111 to 119 base pairs (bp) in length, which is characterized by the three conserved DNA elements CDEI, CDEII, and CDEIII. We isolated a 125-bp CEN6 DNA fragment (named ML CEN6) containing only these conserved elements and assayed it completely separated from its chromosomal context on circular minichromosomes and on a large linear chromosome fragment. The results show that this 125-bp CEN6 DNA fragment is by itself sufficient for complete mitotic and meiotic centromere functions.  相似文献   

5.
Centromere DNA from 11 of the 16 chromosomes of the yeast Saccharomyces cerevisiae have been analyzed and reveal three sequence elements common to each centromere, referred to as conserved centromere DNA elements (CDE). The adenine-plus-thymine (A + T)-rich central core element, CDE II, is flanked by two short conserved sequences, CDE I (8 base pairs [bp]) and CDE III (25 bp). Although no consensus sequence exists among the different CDE II regions, they do have three common features of sequence organization. First, the CDE II regions are similar in length, ranging from 78 to 86 bp measured from CDE I to the left boundary of CDE III. Second, the base composition is always greater than 90% A + T. Finally, the A and T residues in these segments are often arranged in runs of A and runs of T residues, sometimes with six or seven bases in a stretch. We constructed insertion, deletion, and replacement mutations in the CDE II region of the centromere from chromosome III, CEN3, designed to investigate the length and sequence requirements for function of the CDE II region of the centromere. We analyzed the effect of these altered centromeres on plasmid and chromosome segregation in S. cerevisiae. Our results show that increasing the length of CDE II from 84 to 154 bp causes a 100-fold increase in chromosome nondisjunction. Deletion mutations removing segments of the A + T-rich CDE II DNA also cause aberrant segregation. In some cases partial function could be restored by replacing the deleted DNA with fragments whose primary sequence or base composition is very different from that of the wild-type CDE II DNA. In addition, we found that identical mutations introduced into different positions in CDE II have very similar effects.  相似文献   

6.
Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains   总被引:34,自引:5,他引:29       下载免费PDF全文
The functional sequence from the centromere in chromosome VI ( CEN6 ) of Saccharomyces cerevisiae was narrowed down to a stretch of 500 bp by a Bal31 deletion approach. The DNA sequence in this region shows three long stretches, 40 bp, 96 bp, and 63 bp of 85% and more AT pairs and a pyrimidine purine bias in the individual single strands. We assume that the CEN6 functional sequences encompass these AT-rich stretches because this part shows striking similarities to sequence elements common to CEN3 and CEN11 DNA. A strain comparison revealed that CEN6 DNA sequences are confined to the Saccharomyces genus and probably only to the S. cerevisiae species. CEN6 is not highly conserved within S. cerevisiae strains because EcoRI and HindIII restriction site variants are found with high frequency.  相似文献   

7.
Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.  相似文献   

8.
We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae.  相似文献   

9.
Chromatin conformation of yeast centromeres   总被引:23,自引:3,他引:20       下载免费PDF全文
《The Journal of cell biology》1984,99(5):1559-1568
The centromere region of Saccharomyces cerevisiae chromosome III has been replaced by various DNA fragments from the centromere regions of yeast chromosomes III and XI. A 289-base pair centromere (CEN3) sequence can stabilize yeast chromosome III through mitosis and meiosis. The orientation of the centromeric fragments within chromosome III has no effect on the normal mitotic or meiotic behavior of the chromosome. The structural integrity of the centromere region in these genomic substitution strains was examined by mapping nucleolytic cleavage sites within the chromatin DNA. A nuclease-protected centromere core of 220-250 base pairs was evident in all of the genomic substitution strains. The position of the protected region is determined strictly by the centromere DNA sequence. These results indicate that the functional centromere core is contained within 220- 250 base pairs of the chromatin DNA that is structurally distinct from the flanking nucleosomal chromatin.  相似文献   

10.
The centromere DNA element I (CDEI) is an important component of Saccharomyces cerevisiae centromere DNA and carries the palindromic sequence CACRTG (R = purine) as a characteristic feature. In vivo, CDEI is bound by the helix-loop-helix protein CPF1. This article describes the in vivo analysis of all single-base-pair substitutions in CDEI in the centromere of an artificial chromosome and demonstrates the importance of the palindromic sequence for faithful chromosome segregation, supporting the notion that CPF1 binds as a dimer to this binding site. Mutational analysis of two conserved base pairs on the left and two nonconserved base pairs on the right of the CDEI palindrome revealed that these are also relevant for mitotic CEN function. Symmetrical mutations in either half-site of the palindrome affect centromere activity to a different extent, indicating nonidentical sequence requirements for binding by the CPF1 homodimer. Analysis of double point mutations in CDEI and in CDEIII, an additional centromere element, indicate synergistic effects between the DNA-protein complexes at these sites.  相似文献   

11.
Kerry S. Bloom  John Carbon 《Cell》1982,29(2):305-317
We have examined the chromatin structure of the centromere regions of chromosomes III and XI in yeast by using cloned functional centromere DNAs (CEN3 and CEN11) as labeled probes. When chromatin from isolated nuclei is digested with micrococcal nuclease and the resulting DNA fragments separated electrophoretically and blotted to nitrocellulose filters, the centromeric nucleosomal sub-units are resolved into significantly more distinct ladders than are those from the bulk of the chromatin. A discrete protected region of 220–250 bp of CEN sequence flanked by highly nuclease-sensitive sites was revealed by mapping the exact nuclease cleavage sites within the centromeric chromatin. On both sides of this protected region, highly phased and specific nuclease cutting sites exist at nucleosomal intervals (160 bp) for a total length of 12–15 nucleosomal subunits. The central protected region in the chromatin of both centromeres spans the 130 bp segment that exhibits the highest degree of sequence homology (71%) between functional CEN3 and CEN11 DNAs. This unique chromatin structure is maintained on CEN sequences introduced into yeast on autonomously replicating plasmids, but is not propagated through foreign DNA sequences flanking the inserted yeast DNA.  相似文献   

12.
The CEN4 sequences from chromosome 4 that impart mitotic stability to autonomously replicating (ARS) plasmids in yeast cells have been localized to a 1,755-base-pair (bp) fragment. This fragment could be cut in half to give two adjacent, nonoverlapping fragments, that each contained some mitotic stabilization sequences. One of the half-fragments worked as efficiently as the larger fragment from which it was derived, while the other half provided a much poorer degree of mitotic stabilization. Sequencing of 2,095 bp of DNA including this region revealed the presence of a centromere consensus sequence, elements I, II, and III (M. Fitzgerald-Hayes, L. Clarke, and J. Carbon, Cell 29:235-244, 1982), in the half-fragment providing high levels of mitotic stability. The poorly stabilizing half-fragment did not contain any obvious sequence homologies to other centromere sequences. Deletion analysis of the 1,755-bp fragment indicated that removal of the 14-bp element I plus 16 of the 82 bp of element II impaired mitotic stability. Removal of elements I and II eliminated the mitotic stability provided by the consensus sequence.  相似文献   

13.
14.
D. D. Sears  J. H. Hegemann  J. H. Shero    P. Hieter 《Genetics》1995,139(3):1159-1173
We have employed a system that utilizes homologous pairs of human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to assess the specific role (s) of conserved centromere DNA elements (CDEI, CDEII and CDEIII) in meiotic chromosome disjunction fidelity. Thirteen different centromere (CEN) mutations were tested for their effects on meiotic centromere function. YACs containing a wild-type CEN DNA sequence segregate with high fidelity in meiosis I (99% normal segregation) and in meiosis II (96% normal segregation). YACs containing a 31-bp deletion mutation in centromere DNA element II (CDEIIδ31) in either a heterocentric (mutant/wild type), homocentric (mutant/mutant) or monosomic (mutant/--) YAC pair configuration exhibited high levels (16-28%) of precocious sister-chromatid segregation (PSS) and increased levels (1-6%) of nondisjunction meiosis I (NDI). YACs containing this mutation also exhibit high levels (21%) of meiosis II nondisjunction. Interestingly, significant alterations in homolog recombination frequency were observed in the exceptional PSS class of tetrads, suggesting unusual interactions between prematurely separated sister chromatids and their homologous nonsister chromatids. We also have assessed the meiotic segregation effects of rare gene conversion events occurring at sites located immediately adjacent to or distantly from the centromere region. Proximal gene conversion events were associated with extremely high levels (60%) of meiosis I segregation errors (including both PSS and NDI), whereas distal events had no apparent effect. Taken together, our results indicate a critical role for CDEII in meiosis and underscore the importance of maintaining sister-chromatid cohesion for proper recombination in meiotic prophase and for proper disjunction in meiosis I.  相似文献   

15.
In this paper we show that a 211-base pair segment of CEN3 DNA is sufficient to confer wild-type centromere function in the yeast Saccharomyces cerevisiae. We used site-directed mutagenesis of the 211-base pair fragment to examine the sequence-specific functional requirements of a conserved 11-base pair segment of centromere DNA, element III (5'-TGATTTATCCGAA-3'). Element III is the most highly conserved of the centromeric DNA sequences, differing by only a single adenine X thymine base pair among the four centromere DNAs sequenced thus far. All of the element III sequences contain specific cytosine X guanine base pairs, including a 5'-CCG-3' arrangement, which we targeted for single cytosine-to-thymine mutations by using sodium bisulfite. The effects of element III mutations on plasmid and chromosome segregation were determined by mitotic stability assays. Conversion of CCG to CTG completely abolished centromere function both in plasmids and in chromosome III, whereas conversion of CCG to TCG decreased plasmid and chromosome stability moderately. The other two guanine X cytosine base pairs in element III could be independently converted to adenine X thymine base pairs without affecting plasmid or chromosome stability. We concluded that while some specific nucleotides within the conserved element III sequence are essential for proper centromere function, other conserved nucleotides can be changed.  相似文献   

16.
Summary Isolated nuclei of Saccharomyces cerevisiae were incubated with five restriction nucleases. Out of the twenty-one recognition sequences for these nucleases in the centromere region of chromosome XIV, only five are accessible to cleavage. These sites map 11 by and 74 by to the left and 27 bp, 41 by and 290 by to the right, respectively, of the boundaries of the 118 by functional CEN14 DNA sequence. The distance between the sites accessible to cleavage and closest to CEN14 is 156 bp, suggesting this is the maximal size of DNA protected in CEN14 chromatin. The DNA in CEN14 chromatin protected against cleavage with DNase I and micrococcal nuclease overlaps almost completely with this region. Hypersensitive regions flanking both sides are approximately 60 by long. Analyses of other S. cerevisiae centromeres with footprinting techniques in intact cells or nucleolytic cleavages in isolated nuclei are discussed in relation to our results. We conclude that structural data of chromatin obtained with restriction nucleases are reliable and that the structure of CEN14 chromatin is representative for S. cerevisiae centromeres.  相似文献   

17.
The most striking region of structural differentiation of a eukaryotic chromosome is the kinetochore. This chromosomal domain plays an integral role in the stability and propagation of genetic material to the progeny cells during cell division. The DNA component of this structure, which we refer to as the centromere, has been localized to a small region of 220–250 base pairs within the chromosomes from the yeast Saccharomyces cerevisiae. The centromere DNA (CEN) is organized in a unique structure in the cell nucleus and is required for chromosome stability during both mitotic and meiotic cell cycles. The centromeres from one chromosome can stabilize small circular minichromosomes or other yeast chromosomes. The centromeres may therefore interact with the same components of the segregation apparatus regardless of the chromosome in which they reside. The CEN DNA does not encode any regulatory RNAs or proteins, but rather is a cis-acting element that provides genetic stability to adjacent DNA sequences.  相似文献   

18.
Saccharomyces cerevisiae centromeres have a characteristic 120-base-pair region consisting of three distinct centromere DNA sequence elements (CDEI, CDEII, and CDEIII). We have generated a series of 26 CEN mutations in vitro (including 22 point mutations, 3 insertions, and 1 deletion) and tested their effects on mitotic chromosome segregation by using a new vector system. The yeast transformation vector pYCF5 was constructed to introduce wild-type and mutant CEN DNAs onto large, linear chromosome fragments which are mitotically stable and nonessential. Six point mutations in CDEI show increased rates of chromosome loss events per cell division of 2- to 10-fold. Twenty mutations in CDEIII exhibit chromosome loss rates that vary from wild type (10(-4)) to nonfunctional (greater than 10(-1)). These results directly identify nucleotides within CDEI and CDEIII that are required for the specification of a functional centromere and show that the degree of conservation of an individual base does not necessarily reflect its importance in mitotic CEN function.  相似文献   

19.
We have cloned a functional centromeric DNA sequence from Saccharomyces cerevisiae. Using the 2 mu chromosome-loss mapping technique and meiotic tetrad analysis, we have identified this DNA sequence as the centromere of chromosome V (CEN5). The CEN5 sequence has been localized on an 1,100-base-pair BamHI-BglII restriction fragment. Plasmids containing CEN5 and an autonomously replicating sequence are mitotically stable in S. cerevisiae and segregate in a Mendelian fashion during meiosis.  相似文献   

20.
The centromere and promoter factor Cpf1 binds centromere DNA element I found in all centromere DNAs from the yeast Saccharomyces cerevisiae. We analyzed thirty different point mutations in or around CEN6-CDEI (ATCACGTG) for their relative binding affinity to Cpf1 and these data were compared with the in vivo centromere function of these mutants. We show that the minimal length of the Cpf1 binding site needed for full in vitro binding and in vivo activity is 10 base pairs long comprised of CDEI plus the two base pairs 3' of this sequence. The palindromic core sequence CACGTG is most important for in vivo CEN function and in vitro Cpf1 binding. Symmetrical mutations in either halfsite of the core sequence affect in vitro Cpf1 binding and in vivo mitotic centromere function asymmetrically albeit to a different extent. Enlarging the CDEI palindrome to 12 or 20 bps increases in vitro Cpf1 binding but results in increased chromosome loss rates suggesting a need for asymmetrical Cpf1 binding sequences. Additionally, the ability of Cpf1 protein to bind a mutant CDEI element in vitro does not parallel the ability of that mutant to confer in vivo CEN activity. Our data indicate that the in vitro binding characteristics of Cpf1 to CDEI only partly overlap with their corresponding activity within the centromere complex, thus suggesting that in the in vivo situation the CDEI/Cpf1 complex might undergo interactions with other centromere DNA/protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号