首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Three giant horizontal-motion-sensitive (HS) neurons arise in the lobula plate. Their axons terminate ipsilaterally in the medial deutocerebrum and suboesophageal ganglion. Both Golgi impregnations and cobalt fills demonstrate that endings of the two HS cells, representing the upper and middle third of the retina, differ in shape and location from that of the HS cell subtending the lower third of the eye. This dichotomy is reflected by the terminals of a pair of centrifugal horizontal cells (CH), one of which invades lobula plate neuropil subtending the upper two-thirds of the retina. The other overlaps the dendrites of the HS cell subtending the lower one-third of the retina.The HS cells are cobalt-coupled to a variety of complexly arborizing descending neurons. In Musca domestica, gap-junction-like apposition areas have been observed between HS axon collaterals and descending neuron dendrites. The three HS cells also share conventional chemical synapses with postsynaptic elements, which include the dendritic spines of descending neurons. Unlike the giant vertical-motion-sensitive neurons of the lobula plate, whose relationships with descending neurons appear to be relatively simple, the horizontal cells end on a large number of descending neurons where they comprise one of several different populations of terminals. These descending neurons terminate within various centres of the thoracic ganglia, including neuropil supplying leg, neck, and flight muscle.  相似文献   

2.
The synaptic relations of the giant vertical cells in the lobula plate of the fly were investigated using electron microscopical procedures and Lucifer yellow dye backfill and injection techniques. Histological features of the giant vertical cells are described. The giant vertical cells are exclusively postsynaptic in the lobula plate. They function to integrate input from dense arrays of chemical synapses and have a wide spatial input from the lobula plate. The giant vertical cells are postsynaptic to perpendicularly occurring cells. There are two classes of cells presynaptic to the vertical cells, one of which contains large dense-core vesicles. The giant vertical cells are not the only cells postsynaptic to these two classes of perpendicualr cells. A second group of smaller tangential cells, the twin vertical cells, were also found postsynaptic to many of the same cells that synapsed with the giant vertical cells. The twin vertical cells and the giant vertical cells are therefore integrating some of the same information in the lobula plate.  相似文献   

3.
Intracellular recordings combined with iontophoretic injection of Procion Yellow M4RAN were used to study the anatomy and physiology of the centrifugal horizontal cells (CH-cells) in the lobula plate of the blowfly, Phaenicia sericata.Anatomy: The CH-cells comprise a set of two homolateral, giant visual interneurones (DCH, VCH) at the rostral surface of each lobula plate. Their extensive arborizations in the lobula plate possess bulbous swellings (boutons terminaux). The arborization of one cell (DCH) covers the dorsal, and the arborization of the other cell (VCH) the ventral half of the lobula plate. Their axons run jointly with those of the horizontal cells through the chiasma internum and the optic peduncle. Their protocerebral arborization possesses spines; they form a dense network together with the axonal arborization of the horizontal cells, a second type of giant homolateral cell most sensitive to horizontal motion. The protocerebral arborization of the CH-cells gives rise to a cell body fibre which traverses the protocerebrum dorsally to the oesophageal canal. The cell body lies on the contralateral side laterally and slightly dorsally to the oesophageal canal in the frontal cell body layer.Physiology: The CH-cells respond with graded potentials to rotatory movements of their surround. Cells in the right lobula plate respond with excitation (excitatory postsynaptic potentials, membrane depolarization) to clockwise motion (contralateral regressive, ipsilateral progressive), and with inhibition (inhibitory postsynaptic potentials, membrane hyperpolarization) to counterclockwise motion in either or both receptive fields; CH-cells respond to motion presented to the ipsilateral and/or contralateral eye. Cells of the left lobula plate respond correspondingly to the reverse directions of motion. Vertical pattern motion and stationary patterns are ineffective.The heterolateral H1-neurone elicits excitatory postsynaptic potentials in the DCH-cell; these postsynaptic potentials are tightly correlated 1:1 to the preceding H1-action potentíal. The delay between the peak of the action potential and the beginning of the DCH-postsynaptic potential is 1.15 msec, agreeing very well with the value reported previously for the blowfly, Calliphora (Hausen, 1976a). The synaptic input and output connections of the CH-cells are discussed.  相似文献   

4.
SummarySummary Combining intracellular recording and dye injection techniques, the horizontal cells of the blowfly,Phaenicia (= Lucilia) sericata, were studied.Anatomy In each lobula plate, one finds a set of three cells, termed NH-, EH- and SH-cell. EH occurs in two distinct anatomical forms, EH1 and EH2, differing in their respective branching patterns of the axon at the frontal surface of the lobula plate. Each cell's dendrite covers approximately a third of the surface of the lobula plate corresponding to a third of the visual field of the ipsilateral eye. These dendrites possess postsynaptic spines. The axons of all three cells pass along the frontal surface of the lobula plate within the inner chiasma; they cross the optic peduncle and enter the central protocerebrum where they form a second arborization, the axonal arborization consisting of dorsally extending collaterals. The axons terminate in the posterior slope of the ventrolateral protocerebrum. The axonal arborization as well as the axonal terminals possess telodendritic knobs. Ultrastructural investigations show that the lobula plate-dendrite possesses exclusively postsynaptic chemical synapses, and that the axonal arborisation and the axonal terminals possess pre- as well as postsynaptic chemical synapses. The very endings of the axons are exclusively presynaptic.Physiology The horizontal cells respond to stimulation within the ipsi- and/or contralateral receptive field. Regressive motion within the contralateral receptive field induces EPSPs and action potentials of small amplitude (10–35 mV); progressive motion is ineffective. Within the ipsilateral receptive field, regressive motion hyperpolarizes the cell membrane whereas progressive motion induces a strong depolarizing membrane potential-shift with superimposed fast potential changes of noisy appearance. Thus, the horizontal cells respond to rotational movement of the surround around the high axis of the animal: clockwise rotation excites the horizontal cells of the right lobula plate and counterclockwise motion those of the left lobula plate, respectively. However, this compound potential behaviour can only be recorded in the lobula plate-axon and main dendrites, whereas the horizontal cells respond tocontralateral regressive motion with action potentialsonly in their axonal terminals in the posterior slope; no graded potentials can be recorded in this cell region if stimulation occurs within theipsilateral receptive field. It is discussed that the previously described graded potentials for the axonal terminals (Hausen 1976b) can only be measured if the cells are already damaged. The probable cause of this change in response behaviour from action potentials to a compound potential behaviour (consisting of graded potentials and action potentials though of small amplitude) is discussed.This research was supported by the Deutsche Forschungsgemeinschaft through grants Ec56/1a + b and a Heisenberg stipend EC 56/3, funds from the SFB 114, and a grant from the National Science Foundation (NSF BMS 74-21712) awarded to the author and L.G. Bishop. I am indebted to Dr. A. Whittle and particularly to Prof. K. Meller for their invaluable help in ultrathin sectioning and to Mrs. B. Decker who introduced me to the technique of cutting serial semithin sections. Prof. K. Hamdorf helped with many stimulating discussions. I am most grateful to Dr. W. Broughton for kindly correcting the English style.  相似文献   

5.
The lobula plate (LP), which is the third order optic neuropil of flies, houses wide-field neurons which are exquisitely sensitive to motion. Among Diptera, motion-sensitive neurons of larger flies have been studied at the anatomical and physiological levels. However, the neurons ofDrosophila lobula plate are relatively less explored. AsDrosophila permits a genetic analysis of neural functions, we have analysed the organization of lobula plate ofDrosophila melanogaster. Neurons belonging to eight anatomical classes have been observed in the present study. Three neurons of the horizontal system (HS) have been visualized. The HS north (HSN) neuron, occupying the dorsal lobula plate is stunted in its geometry compared to that of larger flies. Associated with the HS neurons, thinner horizontal elements known as h-cells have also been visualized in the present study. Five of the six known neurons of the vertical system (VS) have been visualized. Three additional neurons in the proximal LP comparable in anatomy to VS system have been stained. We have termed them as additional VS AVS)-like neurons. Three thinner tangential cells that are comparable to VS neurons, which are elements of twin vertical system (tvs); and two cells with wide dendritic fields comparable to CH neurons of Diptera have been also observed. Neurons comparable to VS cells but with ‘tufted’ dendrites have been stained. The HSN and VS1-VS2 neurons are dorsally stunted. This is possibly due to the shape of the compound eye ofDrosophila which is reduced in the fronto-dorsal region as compared to larger flies  相似文献   

6.
The distribution and morphology of crustacean cardioactive peptide-immunoreactive neurons in the brain of the locust Locusta migratoria has been determined. Of more than 500 immunoreactive neurons in total, about 380 are interneurons in the optic lobes. These neurons invade several layers of the medulla and distal parts of the lobula. In addition, a small group of neurons projects into the accessory medulla, the lamina, and to several areas in the median protocerebrum. In the midbrain, 12 groups or individual neurons have been reconstructed. Four groups innervate areas of the superior lateral and ventral lateral protocerebrum and the lateral horn. Two cell groups have bilateral arborizations anterior and posterior to the central body or in the superior median protocerebrum. Ramifications in subunits of the central body and in the lateral and the median accessory lobes arise from four additional cell groups. Two local interneurons innervate the antennal lobe. A tritocerebral cell projects contralaterally into the frontal ganglion and appears to give rise to fibers in the recurrent nerve, and in the hypocerebral and ingluvial ganglia. Varicose fibers in the nervi corporis cardiaci III and the corpora cardiaca, and terminals on pharyngeal dilator muscles arise from two subesophageal neurons. Some of the locust neurons closely resemble immunopositive neurons in a beetle and a moth. Our results suggest that the peptide may be (1) a modulatory substance produced by many brain interneurons, and (2) a neurohormone released from subesophageal neurosecretory cells.  相似文献   

7.
The three horizontal cells of the lobula plate of the blowflyCalliphora erythrocephala were studied anatomically and physiologically by means of cobalt impregnations and intracellular recordings combined with Procion and Lucifer Yellow injections. The cells are termed north, equatorial and south horizontal cell (HSN, HSE, HSS) and are major output neurons of the optic lobe. 1. The dendritic arborizations of the HSN, HSE, HSS reside in a thin anterior layer of the lobula plate and extend over the dorsal, equatorial and ventral parts of this neuropil, respectively. Due to the retinotopic organization of the optic lobe, these parts correspond anatomically to respective regions of the ipsilateral visual field. Homologue horizontal cells in both lobula plates of the same animal and in different animals are highly variable with respect to their individual dendritic branching patterns. They are extraordinarily constant, on the other hand, with regard to the position and size of their dendritic fields as well as their dendritic branching density distributions. Each cell covers about 40% of the total area of the lobula plate and shows the highest dendritic density near the lateral margin of the neuropil which subserves the frontal eye region. The axons of the horizontal cells are relatively short and large in diameter; they terminate in the posterior ventrolateral protocerebrum. 2. The horizontal cells are directionally selective motion sensitive visual interneurons responding preferentially to progressive (front to back) motion in the ipsilateral visual field with graded depolarization of their axons and superimposed action potentials. Stimulation with motion in the reverse direction leads to hyperpolarizing graded responses. The HSE and HSN are additionally activated by regressive motion in the contralateral visual field.  相似文献   

8.
Summary In the fly, Calliphora erythrocephala, a cluster of three Y-shaped descending neurons (DNOVS 1–3) receives ocellar interneuron and vertical cell (VS4–9) terminals. Synaptic connections to one of them (DNOVS 1) are described. In addition, three types of small lobula plate vertical cell (sVS) and one type of contralateral horizontal neuron (Hc) terminate at DNOVS 1, as do two forms of ascending neurons derived from thoracic ganglia. A contralateral neuron, with terminals in the opposite lobula plate, arises at the DNOVS cluster and is thought to provide heterolateral interaction between the VS4–9 output of one side to the VS4–9 dendrites of the other. DNOVS 2 and 3 extend through pro-, meso-, and metathoracic ganglia, branching ipsilaterally within their tract and into the inner margin of leg motor neuropil of each ganglion. DNOVS 1 terminates as a stubby ending in the dorsal prothoracic ganglion onto the main dendritic trunks of neck muscle motor neurons. Convergence of VS and ocellar interneurons to DNOVS 1 comprises a second pathway from the visual system to the neck motor, the other being carried by motor neurons arising in the brain. Their significance for saccadic head movement and the stabilization of the retinal image is discussed.  相似文献   

9.
We measured the orientation tuning of two neurons of the fly lobula plate (H1 and H2 cells) sensitive to horizontal image motion. Our results show that H1 and H2 cells are sensitive to vertical motion, too. Their response depended on the position of the vertically moving stimuli within their receptive field. Stimulation within the frontal receptive field produced an asymmetric response: upward motion left the H1/H2 spike frequency nearly unaltered while downward motion increased the spike frequency to about 40% of their maximum responses to horizontal motion. In the lateral parts of their receptive fields, no such asymmetry in the responses to vertical image motion was found. Since downward motion is known to be the preferred direction of neurons of the vertical system in the lobula plate, we analyzed possible interactions between vertical system cells and H1 and H2 cells. Depolarizing current injection into the most frontal vertical system cell (VS1) led to an increased spike frequency, hyperpolarizing current injection to a decreased spike frequency in both H1 and H2 cells. Apart from VS1, no other vertical system cell (VS2-8) had any detectable influence on either H1 or H2 cells. The connectivity of VS1 and H1/H2 is also shown to influence the response properties of both centrifugal horizontal cells in the contralateral lobula plate, which are known to be postsynaptic to the H1 and H2 cells. The vCH cell receives additional input from the contralateral VS2-3 cells via the spiking interneuron V1.  相似文献   

10.
Summary The lobula descending neuron (LDN) of dipterous insects is a unique nerve cell (one on each side of the brain) that projects directly from the lobula complex of the optic lobes to neuropil in thoracic ganglia. In the supraoesophageal ganglia the LDN has two prominent groups of branches of which at least one is dendritic in nature. Postsynaptic branches are distributed in the lobula and some branches, the synaptic relations of which are not yet known, extend to the lobula plate. A second group of branches is found among dendrites of the descending neurons proper, in the lateral midbrain.The arborizations of LDN in the lobula (and lobula plate) map onto a retinotopic neuropil region subserving a posterior strip of the visual field of the compound eye. The arborizations in the lobula complex are extremely variable in size. The numbers of dendritic spines they possess vary greatly between left and right optic lobes of one animal, and between individual animals.  相似文献   

11.
Summary The synaptic contacts made by carp retinal neurons were studied with electron microscopic techniques. Three kinds of contacts are described: (1) a conventional synapse in which an accumulation of agranular vesicles is found on the presynaptic side along with membrane densification of both pre- and postsynaptic elements; (2) a ribbon synapse in which a presynaptic ribbon surrounded by a halo of agranular vesicles faces two postsynaptic elements; and (3) close apposition of plasma membranes without any vesicle accumulation or membrane densification.In the external plexiform layer, conventional synapses between horizontal cells are described. Horizontal cells possess dense-core vesicles about 1,000 Å in diameter. Membranes of adjacent horizontal cells of the same type (external, intermediate or internal) are found closely apposed over broad regions.In the inner plexiform layer ribbon synapses occur only in bipolar cell terminals. The postsynaptic elements opposite the ribbon may be two amacrine processes or one amacrine process and one ganglion cell dendrite. Amacrine processes make conventional synaptic contacts onto bipolar terminals, other amacrine processes, amacrine cell bodies, ganglion cell dendrites and bodies. Amacrine cells possess dense-core vesicles. Ganglion cells are never presynaptic elements. Serial synapses between amacrine processes and reciprocal synapses between amacrine processes and bipolar terminals are described. The inner plexiform layer contains a large number of myelinated fibers which terminate near the layer of amacrine cells.This work was supported by an N.I.H. grant NB 05404-05 and a Fight for Sight grant G-396 to P.W. and N.I.H. grant NB 05336 to J.E.D. The authors wish to thank Mrs. P. Sheppard and Miss B. Hecker for able technical assistance. P.W. is grateful to Dr. G. K. Smelser, Department of Ophthalmology, Columbia University, for the use of his electron microscope facilities.  相似文献   

12.
Summary The anatomy and physiology of a motion-sensitive neurone, the vertical-horizontal (VH-) cell in the third visual neuropil (lobula plate) of the blowfly,Phaenicia was studied by intracellular recordings combined with dye injection. The cell possesses two dendritic fields in different layers of the lobula plate. The axon runs jointly with those of the vertical cells along the caudal surface of the lobula plate and terminates in the central protocerebrum lateral to the esophageal canal. The receptive field of the VH-cell is subdivided into two physiologically different parts which correspond to the two dendritic fields: if the input reaches the dendritic field residing in a more caudal layer (V-layer), the cell responds maximally to vertical pattern motion; whereas if the input reaches the dendritic field residing in a more rostral layer (H-layer), the cell responds maximally to horizontal pattern motion. The VH-neurone responds maximally to a contrast frequency of approximately / 1.8 Hz which coincides with the contrast frequency dependence of optomotor (following) responses. It is, therefore, considered to be a likely candidate mediating the pitch response (Blondeau and Heisenberg 1982) in flies.  相似文献   

13.
This study, using the cobalt chloride technique, clarifies the origin of the giant axons in the cockroach, Periplaneta. Each giant axon in the ventral nerve cord arises from a single cell body located in the sixth abdominal ganglion. The position of the soma is always contralateral to the giant axon; it projects anteriorly. In six giant neurons, the axonic and dendritic branches are ipsilateral while the somata are contralateral. In two neurons, both the soma and the dendritic branches are ipsilateral while the axons are contralateral. The dendritic arborizations of the giant neurons form a dense and compact mass of neuropile in each half of the posterior and middorsal part of the ganglion where sensory fibers, primarily from the cercal nerves terminate. The relation of these findings to earlier electrophysiological studies is discussed.  相似文献   

14.
Social Hymenoptera such as ants or honeybees are known for their extensive behavioral repertories and plasticity. Neurons containing biogenic amines appear to play a major role in controlling behavioral plasticity in these insects. Here we describe the morphology of prominent serotonin-immunoreactive neurons of the antennal sensory system in the brain of an ant, Camponotus japonicus. Immunoreactive fibers were distributed throughout the brain and the subesophageal ganglion (SOG). The complete profile of a calycal input neuron was identified. The soma and dendritic elements are contralaterally located in the lateral protocerebrum. The neuron supplies varicose axon terminals in the lip regions of the calyces of the mushroom body, axon collaterals in the basal ring but not in the collar region, and other axon terminals ipsilaterally in the lateral protocerebrum. A giant neuron innervating the antennal lobe has varicose axon terminals in most of 300 glomeruli in the ventral region of the antennal lobe (AL) and a thick neurite that spans the entire SOG and continues towards the thoracic ganglia. However, neither a soma nor a dendritic element of this neuron was found in the brain or the SOG. A deutocerebral projection neuron has a soma in the lateral cell-body group of the AL, neuronal branches at most of the 12 glomeruli in the dorsocentral region of the ipsilateral AL, and varicose terminal arborizations in both hemispheres of the protocerebrum. Based on the present results, tentative subdivisions in neuropils related to the antennal sensory system of the ant brain are discussed.  相似文献   

15.
Summary The morphology and central projections of first-order ocellar interneurones were analysed in the blowfly, Calliphora erythrocephala after cobalt and horseradish-peroxidase labelling. Three classes of interneurones can be distinguished on the basis of axon diameters: large, medium and small neurones. In total there are 12 large, 10 medium and an unknown number of small interneurones. These interneurones connect the fused first-order ocellar neuropil (underlying the three ocelli) with various areas of the central nervous system. The large neurones terminate in three subregions of the posterior slope (ocellar foci); the medium neurones arborise in several regions of the lateral protocerebrum, in the posterior slope, the lobula, the ventral medulla, and in the pro- and mesothoracic ganglia. The thin fibers arborise in all the above regions (except in the thoracic ganglia), and in addition in the neuropil dorsal to the oesophagus and antero-ventral to posterior slope (tritocerebrum). The anatomy of the ocellar pathway in C. erythrocephala is compared with those in other studied insects. Possible interactions between ocellar interneurones and other pathways are discussed.  相似文献   

16.
Summary We have used specific antisera against protein-conjugated-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. About 20000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers.  相似文献   

17.
Six neural elements, viz., retinular axons, a giant monopolar axon, straight descending processes (type I), lamina monopolar axons (type II), processes containing clusters of dense-core vesicles (type III), and processes coursing in various directions with varicosities (type IV), have been identified at the ultrastructural level in the lamina neuropil of the larval tiger beetle Cicindela chinensis. Retinular axons make presynaptic contact with all other types of processes. Type I and II processes possess many pre-and postsynaptic loci. Type II processes presumably constitute retinotopic afferent pathways. It remains uncertain whether type I processes are lamina monopolar axons or long retinular axons extending to the medullar neuropil. Type III processes may be efferent neurons or branches of afferent neurons contributing to local circuits. A giant monopolar axon extends many branches throughout the lamina neuropil; these branches are postsynaptic to retinular axons, and may be nonretinotopic and afferent. Type IV processes course obliquely in the neuropil, being postsynaptic to retinular axons, and presynaptic to type I processes.  相似文献   

18.
The cockroach Periplaneta americana is an evolutionary basal neopteran insect, equipped with one of the largest and most elaborate mushroom bodies among insects. Using intracellular recording and staining in the protocerebrum, we discovered two new types of neurons that receive direct input from the optic lobe in addition to the neuron previously reported. These neurons have dendritic processes in the optic lobe, projection sites in the optic tracts, and send axonal terminals almost exclusively to the innermost layer of the MB calyces (input site of MB). Their responses were excitatory to visual but inhibitory to olfactory stimuli, and weak excitation occurred in response to mechanosensory stimuli to cerci. In contrast, interneurons with dendrites mainly in the antennal lobe projection sites send axon terminals to the middle to outer layers of the calyces. These were excited by various olfactory stimuli and mechanosensory stimuli to the antenna. These results suggest that there is general modality-specific terminal segregation in the MB calyces and that this is an early event in insect evolution. Possible postsynaptic and presynaptic elements of these neurons are discussed.  相似文献   

19.
Two sets of descending neurons primarily target the somata of neurons in the olfactory deutocerebrum of the spiny lobster, Panulirus argus. Hundreds to thousands of dopamine-like immunoreactive fibers originate in the lateral protocerebrum and terminate among the clustered somata of the olfactory deutocerebrum projection neurons (lateral soma cluster) and those of the olfactory deutocerebrum local interneurons (medial soma cluster). A pair of giant neurons with substance P-and FMRFamide-like immunoreactivity from the median protocerebrum terminate primarily in the lateral soma cluster, but also branch in the core of the olfactory lobe itself. Neurons of both types terminate in numerous bouton-like swellings. The terminals in the lateral cluster at least contain numerous, large, dense-core and small, clear vesicles. The terminals contact the somata and the primary neurites through both traditional chemical synapses and large zones of direct membrane appositions. In most instances, a vesicle-containing profile forms a triadic arrangement with a neurite and a soma the latter being frequently connected via large gap-junction-like structures. Rosette-like arrangements formed by a vesicle-containing profile surrounded by up to eight neurites are also common. Dissociated lateral cluster somata support both fast inward and sustained outward voltage-activated currents. Substance P, but not dopamine or FMRFamide-related peptides, alters the fast inward current. The somata of the olfactory projection neurons, and possibly those of the olfactory local interneurons, appear to serve an integrative, and not merely a supportive role in these invertebrate central neurons.  相似文献   

20.
Summary Four neurons in the brain of the migratory locust were immunohistologically identified with an anti-met-enkephalin antiserum. The perikarya of two of these cells are located in the center of each of the two groups of lateral protocerebral neurosecretory cells. The fibres coming from these perikarya terminate in numerous immunoreactive ramifications visible at the periphery of both tractus I to the corpora cardiaca, through which pass the neurosecretory products of the pars intercerebralis. The other two cell bodies are located at the bases of the two optic lobes; their fibres enter the posterior part of the protocerebrum and ramify around the root of the nervus corporis cardiaci II, another area through which neurosecretory products pass. The topographic distribution of these met-enkephalin arborizations suggests that these four neurons may act as neuromodulators of the acitivity of the major neurosecretory cells in the brain of this insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号