首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fourier transform infrared spectroscopy (FTIR) difference spectroscopy in combination with deuterium exchange experiments has been used to study the photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Comparison of (P740(+)-P740) and (P700(+)-P700) FTIR difference spectra show that P700 and P740 share many structural similarities. However, there are several distinct differences also: 1), The (P740(+)-P740) FTIR difference spectrum is significantly altered upon proton exchange, considerably more so than the (P700(+)-P700) FTIR difference spectrum. The P740 binding pocket is therefore more accessible than the P700 binding pocket. 2), Broad, "dimer" absorption bands are observed for both P700(+) and P740(+). These bands differ significantly in substructure, however, suggesting differences in the electronic organization of P700(+) and P740(+). 3), Bands are observed at 2727(-) and 2715(-) cm(-1) in the (P740(+)-P740) FTIR difference spectrum, but are absent in the (P700(+)-P700) FTIR difference spectrum. These bands are due to formyl CH modes of chlorophyll d. Therefore, P740 consists of two chlorophyll d molecules. Deuterium-induced modification of the (P740(+)-P740) FTIR difference spectrum indicates that only the highest frequency 13(3) ester carbonyl mode of P740 downshifts, indicating that this ester mode is weakly H-bonded. In contrast, the highest frequency ester carbonyl mode of P700 is free from H-bonding. Deuterium-induced changes in (P740(+)-P740) FTIR difference spectrum could also indicate that one of the chlorophyll d 3(1) carbonyls of P740 is hydrogen bonded.  相似文献   

2.
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.  相似文献   

3.
The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC.  相似文献   

4.
Ohnishi T  Salerno JC 《FEBS letters》2005,579(21):4555-4561
A novel mechanism for proton/electron transfer is proposed for NADH-quinone oxidoreductase (complex I) based on the following findings: (1) EPR signals of the protein-bound fast-relaxing semiquinone anion radicals (abbreviated as Q(Nf)-) are observable only in the presence of proton-transmembrane electrochemical potential; (2) Iron-sulfur cluster N2 and Q(Nf)- are directly spin-coupled; and (3) The projection of the interspin vector extends only 5A along the membrane normal [Yano, T., Dunham, W.R. and Ohnishi, T. (2005) Biochemistry, 44, 1744-1754]. We propose that the proton pump is operated by redox-driven conformational changes of the quinone binding protein. In the input state, semiquinone is reduced to quinol, acquiring two protons from the N (matrix) side of the mitochondrial inner membrane and an electron from the low potential (NADH) side of the respiratory chain. A conformational change brings the protons into position for release at the P (inter-membrane space) side of the membrane via a proton-well. Concomitantly, an electron is donated to the quinone pool at the high potential side of the coupling site. The system then returns to the original state to repeat the cycle. This hypothesis provides a useful frame work for further investigation of the mechanism of proton translocation in complex I.  相似文献   

5.
Effects of cellulase on the modification of cellulose   总被引:1,自引:0,他引:1  
Cao Y  Tan H 《Carbohydrate research》2002,337(14):1291-1296
Multicomponent cellulases, purified endoglucanases and cellobiohydrolases were assayed and shown to modify pure natural cellulose (softwood pulp). Changes in structure and properties of the cellulose caused by enzymatic treatment depend on the composition, the type of enzyme, and the treatment conditions. The reactivity of cellulose for some dissolving and derivatization processes may be improved by enzymatic hydrolysis. Endoglucanases decreased the average degrees of polymerization (DP) and improved the alkaline solubility of cellulose most efficiently. The variation in the supramolecular structure estimated from the infrared spectra of the cellulose samples was found to be correlated with the reactivity and might represent wide variations in conformation caused by the breakdown of the hydrogen bonds.  相似文献   

6.
Shinkarev VP  Wraight CA 《FEBS letters》2007,581(8):1535-1541
The cytochrome bc(1) complex (commonly called Complex III) is the central enzyme of respiratory and photosynthetic electron transfer chains. X-ray structures have revealed the bc(1) complex to be a dimer, and show that the distance between low potential (b(L)) and high potential (b(H)) hemes, is similar to the distance between low potential hemes in different monomers. This suggests that electron transfer between monomers should occur at the level of the b(L) hemes. Here, we show that although the rate constant for b(L)-->b(L) electron transfer is substantial, it is slow compared to the forward rate from b(L) to b(H), and the intermonomer transfer only occurs after equilibration within the first monomer. The effective rate of intermonomer transfer is about 2-orders of magnitude slower than the direct intermonomer electron transfer.  相似文献   

7.
8.
Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air+0.5% CO(2) showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C(18:5), C(18:3) and C(22:6)) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH(4)-reduction) of a high proportion of 11-hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7,11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7,11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Delta(5)-3beta,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Delta(5) double bond of epi-brassicasterol and minor amounts of Delta(4)-3beta,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO(2) likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO(2), but not when grown with 0.5% CO(2). The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.  相似文献   

9.
High-resolution 13C NMR spectroscopy has been used to analyze the positional distribution of fatty acids in model triacylglycerols. A novel method for quantitative determination of the positional distribution of unsaturated chains in triacylglycerols simultaneously with the ratio of saturated/unsaturated acyl chains has been proposed, utilizing the chemical shift differences of the aliphatic atoms C4, C5, and C6. The use of HSQC-TOCSY spectra allows unequivocal proof of the position of the unsaturated chain as well as complete assignment of the 13C NMR signals in tripalmitin.  相似文献   

10.
Compared with algal and cyanobacterial cytochrome c(6), cytochrome c(6A) from higher plants contains an additional loop of 12 amino acid residues. We have determined the first crystal structure of cytochrome c(6A) from Arabidopsis thaliana at 1.5 Angstrom resolution in order to help elucidate its function. The overall structure of cytochrome c(6A) follows the topology of class I c-type cytochromes in which the heme prosthetic group covalently binds to Cys16 and Cys19, and the iron has octahedral coordination with His20 and Met60 as the axial ligands. Two cysteine residues (Cys67 and Cys73) within the characteristic 12 amino acids loop form a disulfide bond, contributing to the structural stability of cytochrome c(6A). Our model provides a chemical basis for the known low redox potential of cytochrome c(6A) which makes it an unsuitable electron carrier between cytochrome b(6)f and PSI.  相似文献   

11.
To confirm whether or not the sulfo group of estradiol 17-sulfate (ES) is removed during in vivo metabolism in rats, the doubly labeled conjugate [6,7-3H, 35S] ES was injected into rats, and its biliary and urinary metabolites were determined by reverse isotope dilution method (RIDM). In male rats, the major radioactivity was detected in biliary disulfate fraction, which was composed of mainly ES and its two minor metabolites, 2-hydroxyestradiol 17-sulfate (2-OH-ES) and 2-methoxyestradiol 17-sulfate (2-MeO-ES). In female rats, in contrast, the radioactivity was dispersed into three fractions:biliary monosulfate, biliary disulfate, and urinary monosulfate fractions (Frs.) In both monosulfate Frs., 7beta-hydroxyestradiol 17-sulfate was detected as the major metabolite followed by 6alpha-, 6beta-, and 15beta-hydroxyestradiol 17-sulfates. Like male rats, 2-OH-ES and 2-Meo-ES as the minor products were detected in biliary disulfate fraction. The isotope ratios of ES and its metabolites in both sexes were essentially the same as that of the dose except that of 6alpha-hydroxylated metabolite, which may be derived from the loss of the tritium labeled at C6. These results confirm the occurrence of the direct metabolism of ES in rats.  相似文献   

12.
Munton RP  Vizi S  Mansuy IM 《FEBS letters》2004,567(1):121-128
Synaptic plasticity is a phenomenon contributing to changes in the efficacy of neuronal transmission. These changes are widely believed to be a major cellular basis for learning and memory. Protein phosphorylation is a key biochemical process involved in synaptic plasticity that operates through a tight balance between the action of protein kinases and protein phosphatases (PPs). Although the majority of research in this field has concentrated primarily on protein kinases, the significant role of PPs is becoming increasingly apparent. This review examines one such phosphatase, PP1, and highlights recent advances in the understanding of its intervention in synaptic and structural plasticity and the mechanisms of learning and memory.  相似文献   

13.
Plastocyanin and cytochrome c6 are two small soluble electron carriers located in the intrathylacoidal space of cyanobacteria. Although their role as electron shuttle between the cytochrome b6f and photosystem I complexes in the photosynthetic pathway is well established, their participation in the respiratory electron transport chain as donors to the terminal oxidase is still under debate. Here, we present the first time-resolved analysis showing that both cytochrome c6 and plastocyanin can be efficiently oxidized by the aa3 type cytochrome c oxidase in Nostoc sp. PCC 7119. The apparent electron transfer rate constants are ca. 250 and 300 s(-1) for cytochrome c6 and plastocyanin, respectively. These constants are 10 times higher than those obtained for the oxidation of horse cytochrome c by the oxidase, in spite of being a reaction thermodynamically more favourable.  相似文献   

14.
As typical anchorage-dependent cells myocytes must balance contractility against adequate adhesion. Skeletal myotubes grown as isolated strips from myoblasts on micropatterned glass exhibited spontaneous peeling after one end of the myotube was mechanically detached. Such results indicate the development of a prestress in the cells. To assess this prestress and study the dynamic adhesion strength of single myocytes, the shear stress of fluid aspirated into a large-bore micropipette was then used to forcibly peel myotubes. The velocity at which cells peeled from the surface, V(peel), was measured as a continuously increasing function of the imposed tension, T(peel), which ranges from approximately 0 to 50 nN/ micro m. For each cell, peeling proved highly heterogeneous, with V(peel) fluctuating between 0 micro m/s ( approximately 80% of time) and approximately 10 micro m/s. Parallel studies of smooth muscle cells expressing GFP-paxillin also exhibited a discontinuous peeling in which focal adhesions fractured above sites of strong attachment (when pressure peeled using a small-bore pipette). The peeling approaches described here lend insight into the contractile-adhesion balance and can be used to study the real-time dynamics of stressed adhesions through both physical detection and the use of GFP markers; the methods should prove useful in comparing normal versus dystrophic muscle cells.  相似文献   

15.
Xyloglucans from seeds of Copaifera langsdorffii (XGC), Hymenaea courbaril (XGJ) and Mucuna sloanei (XGM) were obtained from milled and defatted cotyledons by aqueous extraction at 25 degrees C. The resulting fractions contained Glc, Xyl and Gal in molar ratios of 2.5: 1.5: 1.0 (XGC), 3.8: 2.6: 1.0 (XGJ) and 2.5: 1.6: 1.0 (XGM). HPSEC-MALLS/RI analysis showed that each polysaccharide fraction was homogeneous; M(w) values were 1.6 x 10(5), 2.0 x 10(5) and 1.5 x 10(5)g/mol, respectively. The effect of the xyloglucans on the production of O(2)*(-) and NO* and on the recruitment of macrophages to the mouse peritoneum was evaluated. All polysaccharides promoted an increase in the number of peritoneal macrophages in a dose-dependent manner. The largest increase, of 576% in comparison to the control group, was elicited by XGJ at 200 mg/kg. The effect of XGC, XGJ and XGM on O(2)*(-) production, in the presence or absence of phorbol 12-myristate 13-acetate (PMA), was not statistically significant. For NO(.) production, the lowest concentration of XGC (10 microg/ml) gave rise to an increase of 262% when compared to the control group; the effect was dose-dependent, reaching 307% at 50 microg/ml. On the other hand, XGJ at a concentration of 50 microg/ml enhanced NO* production by 92%. XGM did not affect NO* production significantly. The results indicate that xyloglucans from C. langsdorffii, H. courbaril and M. sloanei have immunomodulatory activity.  相似文献   

16.
We compared the thylakoid membrane composition and photosynthetic properties of non- and cold-acclimated leaves from the dgd1 mutant (lacking >90% of digalactosyl-diacylglycerol; DGDG) and wild type (WT) Arabidopsis thaliana. In contrast to warm grown plants, cold-acclimated dgd1 leaves recovered pigment-protein pools and photosynthetic function equivalent to WT. Surprisingly, this recovery was not correlated with an increase in DGDG. When returned to warm temperatures the severe dgd1 mutant phenotype reappeared. We conclude that the relative recovery of photosynthetic activity at 5 degrees C resulted from a temperature/lipid interaction enabling the stable assembly of PSI complexes in the thylakoid.  相似文献   

17.
Tamura M  Itoh K  Akita H  Takano K  Oku S 《FEBS letters》2006,580(1):261-267
Actin has been reported to enhance the superoxide-generating activity of neutrophil NADPH oxidase in a cell-free system and to interact with p47phox, a regulatory subunit of the oxidase. In the present study, we searched for an actin-binding site in p47phox by far-western blotting and blot-binding assays using truncated forms of p47phox. The amino-acid sequence 319-337 was identified as an actin-binding site, and a synthetic peptide of this sequence bound to actin. The sequence shows no homology to other known actin-binding motifs. It is located in the autoinhibitory region of p47phox and includes Ser-328, a phosphorylation site essential for unmasking. Although a phosphorylation-mimetic p47phox mutant bound to actin with a lower affinity than the wild type, the same mutant interacted with filamentous actin more efficiently than the wild type. A mutant peptide p47phox (319-337, Ser328Glu) bound to filamentous actin more tightly than to monomer actin. These results suggest that p47phox moves to cortical actin when it becomes unmasked in the cells.  相似文献   

18.
A convenient synthesis of [1-14C]-mono-trans fatty acid using olefin inversion as a key-step is described. This methodology allows for a facile synthesis of [1-14C]-labelled mono-trans analogues of oleic, linoleic and linolenic acids. As an example, only eleven steps were necessary to obtain the [1-14C]-mono-E isomers of linolenic acid from its commercial all-Z form. In the first step, Barton's decarboxylation procedure yielded a bromo intermediate. Epoxidation of this compound resulted in the formation of three monoepoxides, which could be separated by HPLC. After identification by 1H NMR and MS, the pure monoepoxides were then subjected to inversion consisting of a stereospecific deoxygenation followed by a beta-elimination step. Finally, the labelling was introduced by substitution of the bromine by a [14C]-cyano group followed by hydrolysis.  相似文献   

19.
We recently found that the concentration of HCO3- in guinea-pig saliva is very similar to that of human saliva; however, the entity that regulates HCO3- transport has not yet been fully characterized. In order to investigate the mechanism of HCO3- transport, we identified, cloned, and characterized a sodium bicarbonate (Na(+)/HCO3- cotransporter found in guinea-pig parotid glands (gpNBC1). The gpNBC1 gene encodes a 1079-amino acid protein that has 95% and 96% homology with human and mouse parotid NBC1, respectively. Oocytes expressing gpNBC1 were exposed to HCO3- or Na(+)-free solutions, which resulted in a marked change in membrane potentials (V(m)), suggesting that gpNBC1 is electrogenic. Likewise, a gpNBC1-mediated pH recovery was observed in gpNBC1 transfected human hepatoma cells; however, in the presence of 4, 4-diisothiocyanostilbene-2,2-disulfonic acid, a specific NBC1 inhibitor, such changes in V(m) and pH(i) were not observed. Together, the data show that the cloned guinea-pig gene is a functional, as well as sequence homologue of human NBC1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号