首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Okajima  R Heldt  G Hertting 《Life sciences》1986,38(12):1143-1149
AVP(10(-8)-10(-6)M) increased ACTH as well as PGE2 release from rat anterior pituitary quarters in vitro in a concentration dependent manner. IBMX (0.1 mM), a phosphodiesterase inhibitor, increased the ACTH response to AVP. The cAMP content in pituitary tissue was increased by AVP. Cyclooxygenase inhibition by indomethacin(1.4 X 10(-5) M) or diclofenac (1.8 X 10(-5)M) led to a potentiation of AVP-evoked ACTH secretion and to a decrease in AVP-stimulated cAMP formation. PGE2(10(-6)M) significantly increased pituitary cAMP content and indomethacin did not affect cAMP levels activated by PGE2. PGE2 attenuated the AVP-induced ACTH release. These results indicate that at least two functional compartments of AVP-activated cAMP responses are involved in the AVP-induced ACTH release. One compartment is directly activated by AVP and participates in the propagation of AVP-induced ACTH release. The second compartment is activated by PGE2. The contribution of the second compartment to the regulation of ACTH secretion is not well understood since PGE2 shows an inhibitory effect on AVP-induced ACTH secretion.  相似文献   

2.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

3.
The aim of the present study was to compare the effect of social stress on the corticotropin releasing hormone (CRH) and arginine vasopressin (AVP)-induced pituitary-adrenocortical activity. Also the significance of prostaglandins (PG) generated by constitutive and inducible cyclooxygenase (COX-1 and COX-2) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by AVP under basal and crowding stress conditions was investigated. The control rats were housed 7 in a standard cage and stressed rats were crowded 24 in a cage of the same size during 7 days. The activity of HPA axis was determined by measuring plasma ACTH and serum corticosterone levels 1 h after i.p. AVP administration. Indomethacin (2.0 mg/kg i.p.), a non-selective COX inhibitor, piroxicam (0.2, 2.0, and 5.0 mg/kg), a more potent COX-1 than COX-2 inhibitor, and compound NS-398 (0.2 and 2.0 mg/kg) a selective COX-2 inhibitor, were administered i.p. 15 min prior to AVP (5.0 microg/kg i.p.) to control or crowded rats. The obtained results indicate that social stress for 7 days considerably inhibits the stimulatory action of AVP on ACTH secretion, while it intensifies the CRH-induced ACTH secretion. Indomethacin, piroxicam and NS-398 significantly diminished the AVP-elicited ACTH and corticosterone secretion in non-stressed rats. None of these COX antagonist induced any significant inhibition of the AVP-induced ACTH and corticosterone secretion in stressed rats. Therefore, PG generated by COX-1 or COX-2 do not participate to a significant extent in the HPA stimulation by AVP during crowding stress. These results suggest that social crowding stress desensitizes the PG stimulatory mechanism which considerably mediates the AVP-induced HPA stimulation under basal conditions. The results contrast with a lack of any involvement of PG in the CRH-induced stimulation of HPA response under basal or crowding stress conditions.  相似文献   

4.
Arginine vasopressin (AVP) induces immediate prostaglandin E(2) (PGE(2)) production in rat 3Y1 fibroblasts. Judging from effects of several inhibitors, cytosolic phospholipase A(2)alpha (cPLA(2)alpha) and cyclooxygenase-1 (COX-1) were mainly involved in this reaction. The antagonist of vasopressin receptor V1a, and not that of V2, inhibited the AVP-induced PGE(2) synthesis, indicating that AVP activates cPLA(2)alpha through V1a receptor. Treatment of 3Y1 cells with AVP resulted in transient activation of p44/42 mitogen-activated protein kinase (MAPK) and cPLA(2)alpha, and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked not only AVP-induced PGE(2) synthesis but also MAPK activation, suggesting that PI3K is involved in the AVP-induced MAPK and cPLA(2)alpha activation, which initiates the production of PGE(2). These results suggest that PGE(2) generated by the stimulation of AVP probably modulates the physiological effects of AVP.  相似文献   

5.
Prostaglandin E1 (PGE1) at 1 nM inhibits arginine-vasopressin (AVP)-induced water reabsorption in the rabbit cortical collecting tubule (RCCT), while 100 nM PGE1, by itself, stimulates water reabsorption (Grantham, J. J., and Orloff, J. (1968) J. Clin. Invest. 47, 1154-1161). To investigate the basis for these two responses, we measured the effects of prostaglandins on cAMP metabolism in purified RCCT cells. In freshly isolated cells, PGE2, PGE1, and 16,16-dimethyl-PGE2 acting at high concentrations (0.1-10 microM) stimulated cAMP accumulation; however, one PGE2 analog, sulprostone (16-phenoxy-17,18,19,20-tetranor-PGE2 methylsulfonilamide), failed to stimulate cAMP accumulation or to antagonize PGE2-induced cAMP formation; PGD2, PGF2 alpha, and a PGI2 analog, carbacyclin (6-carbaprostaglandin I2), also failed to stimulate cAMP synthesis. These results suggest that there is a PGE-specific stimulatory receptor in RCCT cells which mediates activation of adenylate cyclase. Occupancy of this receptor would be anticipated to cause water reabsorption by the collecting tubule. At lower concentrations (0.1-100 nM) PGE2, PGE1, 16,16-dimethyl-PGE2, and, in addition, sulprostone inhibited AVP-induced cAMP accumulation by fresh RCCT cells in the presence of cAMP phosphodiesterase inhibitors. Pertussis toxin pretreatment of RCCT cells blocked the ability of both PGE2 and sulprostone to inhibit AVP-induced cAMP accumulation. In membranes prepared from RCCT cells, sulprostone prevented stimulation of adenylate cyclase by AVP. These results suggest that E-series prostaglandins (including sulprostone) can act through an inhibitory PGE receptor(s) coupled to the inhibitory guanine nucleotide regulatory protein, Gi, to block AVP-induced cAMP synthesis by RCCT cells. Occupancy of this receptor would be expected to cause inhibition of AVP-induced water reabsorption in the intact tubule. Curiously, after RCCT cells were cultured for 5-7 days, PGE2 no longer inhibited AVP-induced cAMP accumulation, but PGE2 by itself could still stimulate cAMP accumulation. In contrast to PGE2, epinephrine acting via an alpha 2-adrenergic, Gi-linked mechanism did block AVP-induced cAMP formation by cultured RCCT cells. This implies that some component of the inhibitory PGE response other than Gi is lost when RCCT cells are cultured.  相似文献   

6.
Wound-induced injury of 3T6 fibroblast cultures initiated a repair process stimulated by fetal calf serum (FCS) that restored the integrity of cell cultures. In these experimental conditions, FCS induced arachidonic acid (AA) release and eicosanoid production. Our results show that the inhibition of the cyclooxygenase (COX) and/or cytochrome P-450 pathways significantly decreases the wound closure, whereas that of the lipoxygenase pathway does not modify the wound repair process. Both EP(1) and EP(4) receptors of prostaglandin E(2) (PGE(2)) mediate PGE(2) stimulated 3T6 fibroblast wound closure. Our data suggest that calcium and cAMP are involved in the signaling event induced by PGE(2) during the 3T6 fibroblast wound repair process. On the other hand, we show that ketoconazole, a cytochrome P-450 inhibitor, hinders the wound closure induced by FCS in wounded 3T6 fibroblast cultures. 12 and 20 Hydroxyeicosatetraenoic acids (HETEs), which are key AA metabolites synthesized by cytochrome P-450, partially revert the effects of ketoconazole on the wound repair process. Thus, the COX and cytochrome P-450 pathways of the arachidonate cascade are involved in 3T6 fibroblast wound closure.  相似文献   

7.
In autosomal dominant polycystic kidney disease (ADPKD), arginine vasopressin (AVP) accelerates cyst growth by stimulating cAMP-dependent ERK activity and epithelial cell proliferation and by promoting Cl(-)-dependent fluid secretion. Tolvaptan, a V2 receptor antagonist, inhibits the renal effects of AVP and slows cyst growth in PKD animals. Here, we determined the effect of graded concentrations of tolvaptan on intracellular cAMP, ERK activity, cell proliferation, and transcellular Cl(-) secretion using human ADPKD cyst epithelial cells. Incubation of ADPKD cells with 10(-9) M AVP increased intracellular cAMP and stimulated ERK and cell proliferation. Tolvaptan caused a concentration-dependent inhibition of AVP-induced cAMP production with an apparent IC(50) of ~10(-10) M. Correspondingly, tolvaptan inhibited AVP-induced ERK signaling and cell proliferation. Basolateral application of AVP to ADPKD cell monolayers grown on permeable supports caused a sustained increase in short-circuit current that was completely blocked by the Cl(-) channel blocker CFTR(inh-172), consistent with AVP-induced transepithelial Cl(-) secretion. Tolvaptan inhibited AVP-induced Cl(-) secretion and decreased in vitro cyst growth of ADPKD cells cultured within a three-dimensional collagen matrix. These data demonstrate that relatively low concentrations of tolvaptan inhibit AVP-stimulated cell proliferation and Cl(-)-dependent fluid secretion by human ADPKD cystic cells.  相似文献   

8.
The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove valuable for more detailed investigations of the molecular and mechanistic basis of the response to PB and its modulation by endogenous hormones.  相似文献   

9.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF2 alpha, increased intracellular cAMP concentrations. At maximal concentrations (10(-5) M) the effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10(-5) M PGE2. PGs, when tested at concentrations (e.g. 10(-9) M) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmotic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10(-5) M), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

10.
Primary cultures of rat hepatocytes were exposed to phenobarbitone, clofibric acid, beta-naphthoflavone, isosafrole or dexamethasone for 3 days, and the induction of several cytochrome P-450 isoenzymes was demonstrated by increased catalytic activity, by Western blotting and by immunocytochemistry. The profiles of isoenzymes induced in vitro were compared with those induced in liver microsomes of rats dosed with the same agents. Clofibric acid, an agent which has not been thoroughly investigated previously, was shown to induce both in vivo and in vitro several P-450 isoenzymes normally inducible by phenobarbitone (PB1a, PB3a and PB3b) or steroids (PB2c). Immunocytochemical studies demonstrated that the inducible isoenzymes of cytochrome P-450 are not distributed evenly throughout the hepatocyte population, and increasing concentrations of phenobarbitone or beta-naphthoflavone in the medium results in an increasing proportion of 'induced' cells. However, whereas maximal concentrations of beta-naphthoflavone resulted in virtually all cells containing induced levels of MC1b, a maximal concentration of phenobarbitone resulted in only 30% of the cells containing induced levels of PB3a/PB3b. These results are discussed in relation to the heterogeneous distribution and induction of cytochrome P-450 in the intact liver.  相似文献   

11.
This study investigated whether the same cytochrome P-450 (P-450) isoenzymes were inducible in cultures of chick-embryo hepatocytes as in the liver of chicken embryos. We purified two isoenzymes of cytochrome P-450 from the livers of 17-day-old-chick embryos: one of molecular mass approx. 50 kDa induced in vivo by the phenobarbital-like inducer glutethimide, and the second of approx. 57 kDa induced by 3-methylcholanthrene. Rabbit antiserum against the 50 kDa protein inhibited benzphetamine demethylase activity in hepatic microsomes (microsomal fractions) from glutethimide-treated chick embryo. Antiserum to the 57 kDa protein inhibited ethoxyresorufin de-ethylase activity in hepatic microsomes from methylcholanthrene-treated chick embryo. Cultured chick hepatocytes were treated with chemicals known to induce isoenzymes of P-450 in rodent liver. The induced P-450s were quantified spectrophotometrically and characterized by immunoblotting and enzyme assays. From these studies, chemical inducers were classified into three groups: (i) chemicals that induced a P-450 isoenzyme of 50 kDa and increased benzphetamine demethylase activity: glutethimide, phenobarbital, metyrapone, mephenytoin, ethanol, isopentanol, isobutanol, lindane, lysodren; (ii) chemicals that induced a P-450 isoenzyme of 57 kDa and increased ethoxyresorufin de-ethylase activity: 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl; and (iii) the mono-alpha-substituted 2,3',4,4',5-pentabromobiphenyl, which induced both proteins and both activities. The immunochemical data showed that chick-embryo hepatocytes in culture retain the inducibility of glutethimide- and methylcholanthrene-induced isoenzymes of P-450 that are inducible in the liver of the chicken embryo.  相似文献   

12.
D M Gibbs  W Vale  J Rivier  S S Yen 《Life sciences》1984,34(23):2245-2249
The effects of CRF(41), oxytocin (OT), and arginine vasopressin (AVP) on ACTH secretion were studied alone and in combination in an in vitro system of superfused rat hemipituitaries. CRF(41) (10(-9)M) and AVP (10(-8)M) alone produced a significant increase in ACTH secretion while OT (10(-8)M) alone had no effect. However the same concentration of OT markedly potentiated the ACTH response to CRF(41) while having no effect on the ACTH response to AVP. The data support a physiologic role for OT in the regulation of ACTH secretion.  相似文献   

13.
The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on polycyclic aromatic hydrocarbon (PAH) metabolism and steroidogenesis in primary cultures of bovine adrenal cortical (BAC) and rat adrenal cortical (RAC) cells have been examined. Remarkably TCDD is an ineffective inducer (15-50%) of PAH metabolism in confluent BAC cells and completely antagonizes a 5-fold induction by benz[alpha]anthracene (BA). In the same concentration range (EC50 5 X 10(-11) M) TCDD suppresses steroidogenesis through an effect on cholesterol metabolism. Adrenocorticotropin (ACTH) and cAMP also suppress PAH metabolism at concentrations which stimulate steroidogenesis (10(-7) M). In RAC cells ACTH potently induces PAH metabolism (7-fold) at a comparable concentration to the stimulation of steroidogenesis. Parallel stimulation of PAH metabolism and steroidogenesis by cAMP suggest that ACTH induction of PAH metabolism is mediated by cAMP. TCDD induces PAH metabolism (2.8-fold, EC50 8 X 10(-11) M) at similar concentrations to the inhibitory effect in BAC cells and this action is additive with ACTH induction. In male rats in vivo TCDD induces adrenal microsomal PAH metabolism (72%) and is more effective in this respect than 3-methylcholanthrene (3MC). Rabbit antibodies against rat liver cytochrome P-450c (the major TCDD-inducible liver form) inhibited the TCDD-induced adrenal metabolism of 7,12-dimethylbenz[alpha]anthracene (DMBA), which also exhibited regioselectivity typical of metabolism by P-450c. Constitutive adrenal microsomal metabolism, which exhibited regioselectivity of DMBA metabolism comparable to the ACTH-sensitive cellular metabolism, was not affected by anti-P-450c. It is concluded that ACTH and TCDD induce distinct forms of cytochrome P-450 in RAC cells and that the latter represents a typical Ah-receptor mediated response. The anomalous effect on PAH metabolism in BAC cells that parallels inhibition of steroidogenesis may derive from repression of a distinct adrenal form of P-450 by the TCDD-Ah-receptor complex.  相似文献   

14.
The aim of the present study was to determine the effect of social crowding stress and significance of nitric oxide (NO) and prostaglandins (PG) generated by constitutive and inducible nitric oxide synthase (NOS) and cyclooxygenase (COX) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic receptor agonist carbachol. Inhibitors of neuronal NOS (nNOS) L-NNA, general NOS L-NAME and inducible NOS (iNOS) aminoguanidine, as well as inhibitors of COX-1, piroxicam, and COX-2, compound NS-398 were administered 15 min prior to carbachol to control or crowded rats (24 rats in cage for 7, during 3 and 7 days). In stressed rats L-NAME, L-NNA and aminoguanidine significantly intensified the carbachol-induced ACTH and corticosterone secretion, like in control rats. Piroxicam, markedly decreased the carbachol-induced ACTH and corticosterone response under either basal or stress conditions. Compound NS-398 did not markedly alter the carbachol-induced HPA response in control and stressed rats. Crowding stress (3 days) significantly impaired the i.c.v. prostaglandin E(2)-induced ACTH response. Corticotropin releasing hormone (CRH) receptor antagonists, alpha-helical CRH [9-14], given i.c.v. did not alter the PGE(2)-evoked corticosterone response in either control or stressed rats, indicating that hypothalamic CRH is not involved in the PGE(2)-induced central stimulation of HPA axis. In control rats L-NAME considerably enhanced, while L-arginine, a physiological NOS substrate, abolished the PGE(2)-induced ACTH and corticosterone response. In stressed rats this NOS blocker significantly increased and L-Arg reduced the stimulatory effect of PGE(2) on ACTH and corticosterone secretion. The carbachol-induced corticosterone response was significantly increased by pretreatment with nNOS inhibitor L-NNA and was considerably reduced by indomethacin, a general COX inhibitor. Pretreatment with both antagonists left the carbachol-induced corticosterone level unchanged, suggesting an independent and reciprocal effect of NO and PG in the cholinergic stimulation of pituitary-adrenocortical response. These results indicate that in the stimulatory action of muscarinic agonist, carbachol, NO is an inhibitory transmitter under basal and crowding stress conditions. This psychosocial stress does not functionally affect the NOS/NO systems. Prostaglandins are involved in the cholinergic muscarinic-induced stimulation of HPA response to a significant extent in non-stressed rats. PGE(2) may be involved in the carbachol-elicited HPA response under basal and stress conditions. Prostaglandins released in response to muscarinic stimulation did not evoke the hypothalamic CRH mediation. NO significantly impairs and PG stimulates the carbachol-induced HPA response in rats under basal and social stress conditions.  相似文献   

15.
Arg-vasopressin (AVP) stimulates the production of inositol-1,4,5-triphosphate, inositol-1,4-bisphosphate and inositol-1-phosphate in A10 smooth muscle cell line. The AVP stimulation is rapid, time and dose dependent with an ED50 value of 5 nM. Protein kinase C activator, phorbol ester blocks the AVP effect on the production of inositol phosphates, suggesting that AVP induced phospholipase C (PLC) activation is under the negative feedback regulation by diacylglycerol production. Prolonged overnight treatment with either pertussis toxin and cholera toxin resulted partial inhibition of AVP-induced production of inositol phosphates. This result suggests that a novel G-protein similar to transducin might be involved in the AVP-induced PLC activation.  相似文献   

16.
Noncyclooxygenase metabolites of arachidonic acid may be potent modulators of the mitogenic response of renal mesangial cells to the mitogenic vasoactive peptide arginine vasopressin (AVP). Since Ca2+ is a critical second messenger in the response of mesangial cells to AVP, and Ca2+ has been implicated in the regulation of growth, we determined whether noncyclooxygenase metabolites altered the phospholipase C-Ca2+ signalling cascade which is activated by AVP. Pretreatment of mesangial cells for 10 min with lipoxygenase and cytochrome P450 monooxygenase inhibitors, nordihydroguaiaretic acid (NDGA, 10(-5) M) or SKF-525A (2.5 x 10(-5) M), but not the cyclooxygenase inhibitor indomethacin (2 x 10(-5) M), reduced the magnitude of the AVP (10(-8) and 10(-7) M)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) without affecting inositol trisphosphate production. With 10(-8) M AVP, [Ca2+]i increased to 250 +/- 47 nM in NDGA-treated cells versus 401 +/- 59 nM in control cells (p less than 0.01). [Ca2+]i, measured 2 min after exposure to AVP, was also lower with NDGA (152 +/- 21 nM) when compared with AVP alone (220 +/- 22 nM, p less than 0.01). 14,15-epoxyeicosatrienoic acid (EET) (10(-8) M), which had no effect on inositol trisphosphate production, completely reversed the NDGA-induced inhibition of the [Ca2+]i transient, whereas 5-hydroperoxyeicosatetraenoic acid (HPETE) (5 x 10(-7) M) did not. Pretreatment with higher concentrations of 14,15-EET (10(-7)-10(-6) M) markedly potentiated the AVP-induced increase in [Ca2+]i. NDGA-induced inhibition of the AVP-generated [Ca2+]i transient was also observed when cells were incubated in low Ca2+ media ([Ca2+] less than 5 x 10(-8) M), suggesting that NDGA pretreatment impaired intracellular release of Ca2+. Since NDGA had no direct effect on inositol 1,4,5-trisphosphate-induced Ca2+ release, we postulated that NDGA blocked production of a metabolite that releases Ca2+ from intracellular stores. 14,15-EET and 15-HPETE, but not 15-hydroxyeicosatetraenoic acid (each at 3 x 10(-7) M), raised [Ca2+]i when added directly to cells in low Ca2+ media. In permeabilized cells 14,15-EET and 15-HPETE (10(-7) M) potently released Ca2+ from intracellular stores. In summary, noncyclooxygenase metabolites of arachidonic acid, and in particular P450 metabolites, are potent endogenous amplifiers of the AVP-induced [Ca2+]i signal by mechanisms not directly involving phospholipase C activation. This effect is mediated, at least in part, by enhanced release of Ca2+ from intracellular storage sites by an inositol 1,4,5-trisphosphate-independent mechanism.  相似文献   

17.
Steroid-induced difference spectra have been used to examine the combination of cholesterol with adrenal mitochondrial cytochrome P-450 which participates in cholesterol side chain cleavage (P-450scc) and the depletion of cholesterol from the cytochrome which results from turnover of the enzyme system. Type I difference spectra-induced by cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and cholest-5-ene-3beta, 20 alpha, 22R-triol (20alpha, 22R dihydroxycholesterol) have been used to quantitate binding of cholesterol to two sites (I and II) on cytochrome P-450scc. The action of adrenocorticotropic hormone (ACTH) in vivo and the action of calcium or phosphate ions on isolated mitochondria stimulate the combination of cholesterol with site I but not site II. Cholesterol derived from lecithin-cholesterol micelles, however, binds to both sites. Malate-induced cholesterol depletion occurred at a comparable rate to the transfer of cholesterol from lecithin-cholesterol micelles. However, a residual proportion of cholesterol-cytochrome P-450scc complexes remained, even after 10 min of exposure to malate, and was of similar magnitude in mitochondria from both cycloheximide-treated and stressed rats. It is suggested that this reflects a less reactive form of cholesterol-cytochrome complex. Steroid-induced difference spectra indicate that sites I and II on cytochrome P-450scc are similarly depleted after metabolism of mitochondrial cholesterol in vitro and after inhibition of the action of ACTH in vivo. Anaerobiosis of adrenal cells after excision of the accumulation of cholesterol at cytochrome P-450cc. When anaerobiosis was prevented, cytochrome P-450scc in the freshly isolated mitochondria was apparently essentially free of complexed cholesterol, irrespective of the extent of ACTH action. For 30 min after suspension of the mitochondria in 0.25 M sucrose at 4 degrees, cholesterol combines with cytochrome P-450scc. The extent of this process was not affected by the presence of cycloheximide during ether stress treatment of the rats. It is concluded that there are at least two pools of mitochondrial cholesterol with access to cytochrome P-450scc but that ACTH stimulates only the pool which most readily interacts with the cytochrome.  相似文献   

18.
In the presence of phenobarbital (PB) at 3 mM, hepatocytes isolated from adult rats by a collagenase-perfusion technique survived well on plastic dishes for at least 49 days after initiation of primary culture. PB at concentrations less than 3 mM was ineffective for the maintenance of hepatocytes, and the maintenance of them was attained only in the continuous presence of 3 mM PB. The hepatocytes surviving in the presence of 3 mM PB were morphologically indistinguishable from the hepatocytes after 1-day attachment period, except for the presence of prominent nucleoli in the former. Although both the albumin secretion and tyrosine aminotransferase (TAT) activities of the cells decreased gradually up to day 7 with time in culture, both were thereafter maintained at relatively high levels at least up to day 35 of primary culture. The addition of 10 microM dexamethasone caused a 3-5-fold induction in TAT activity, and the cells were capable of responding to the hormone in this manner at least up to day 28 of primary culture. Furthermore, the cells also had glucose-6-phosphatase activity, even though the level of this enzyme activity was relatively low as compared with that of TAT activity. Survival of hepatocytes in the presence of 3 mM PB was further enhanced by simultaneous addition of dexamethasone (10 microM) and insulin (10 micrograms/ml). The sensitivity of hepatocytes to 3'-methyl-4-dimethylaminoazobenzene (0.24 mM) was remarkably reduced by treatment with PB at 3 mM. PB treatment decreased efficiently the falling rate of total cytochrome P-450 content, but did not induce P-450PB, which is the specific form of cytochrome P-450 induced by PB, in primary cultured hepatocytes. On the other hand, 3-methylcholanthrene (MC, 10 microM) caused an increase of both contents of total cytochrome P-450 and P-450MC, which is the specific form of cytochrome P-450 induced by MC, in primary cultured hepatocytes. However, MC was ineffective for the maintenance of hepatocytes in primary culture. The possible biological actions of PB on primary cultured hepatocytes are discussed on the basis of the experimental data obtained.  相似文献   

19.
Rat hepatic cytochrome P-450 isoenzyme 2c, purified to homogeneity from uninduced, adult rat liver (Waxman, D.J., Ko, A., and Walsh, C. (1983) J. Biol. Chem. 258, 11937-11947), was shown to exhibit a unique NH2-terminal amino acid sequence as well as distinctive peptide maps and immunochemical properties when compared to seven other purified rat liver P-450 isoenzymes. P-450 2c was an efficient monooxygenase catalyst with several xenobiotic substrates; P-450 2c also catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone, androst-4-ene-3,17-dione and progesterone (total turnover = 7-9 min-1 P-450(-1) at 25 microM steroid substrate) with the ratio of 2 alpha to 16 alpha hydroxylation varying from less than or equal to 0.02 to 1.6 depending on the steroid's C-17 substituent. Six different microsomal steroid hydroxylase activities characteristic of purified P-450 2c and sensitive to specific inhibition by anti-P-450 2c antibody were induced at puberty in male but not female rat liver. Microsomal steroid hydroxylations catalyzed by other P-450 isoenzymes exhibited age and sex dependencies distinct from those of the P-450 2c-mediated activities. Immunochemical analyses confirmed that this sex dependence and developmental induction reflected alterations in P-450 2c polypeptide levels. Attempts to chromatographically detect P-450 2c in either immature male or adult female microsomes were unsuccessful and led to purification of P-450 2d (female), a catalytically distinct and female-specific form. Peptide mapping and immunochemical analyses suggested significant structural homologies between the two sex-specific isoenzymes, P-450 2c and P-450 2d (female). A significant suppression of P-450 2c levels (up to 70-80%) was observed upon administration of several classical P-450 inducers. These studies establish that P-450 2c corresponds to the male-specific and developmentally-induced steroid 16 alpha-hydroxylase of rat liver and suggest that the expression of P-450 2c versus P-450 2d (female) may provide a biochemical basis for the sex differences characteristic of rat liver xenobiotic metabolism.  相似文献   

20.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号