首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human erythrocyte ankyrin was cleaved by restricted proteolysis at 0 degrees C into two distinct chemical domains. The site on ankyrin that binds spectrin was found to be within a 55,000-dalton domain by spectrin affinity chromatography and co-sedimentation with spectrin in a sucrose gradient. A 32,000-dalton fragment of this domain was prepared (tryptic digest, 0 degrees C, 24 h), separated by gel filtration, and shown to inhibit spectrin binding to the membrane. By comparison with previous two-dimensional peptide maps, the spectrin-binding site was located within this 32,000-dalton fragment near the end of the molecule. The band 3-binding site was identified within an 82,000-dalton domain by binding to a band 3 affinity column. Gel electrophoresis in the absence of detergents confirmed these results and demonstrated that a peptide from the cytoplasmic portion of band 3 retained the capacity to bind the 82,000-dalton domain. The binding properties of the structural domains of ankyrin were correlated with a determination of the affinity constant of the intact molecule. Ankyrin bound with a high affinity to the cytoplasmic portion of band 3 (KD = 8 X 10(-8) M) and to spectrin tetramer (KD = 1 X 10(-7) M) but less so to spectrin dimer (KD = 1 X 10(-6) M). These findings are summarized in a preliminary structural and functional model of ankyrin's role in linking spectrin to the membrane.  相似文献   

2.
Spectrin, the major cytoskeletal protein in erythrocytes, is localized on the inner membrane surface in association with membrane-spanning glycoproteins and with intramembrane particles. The presence of a specific, high-affinity protein binding site for spectrin on the cytoplasmic surface of the membrane has been established by measurement of reassociation of spectrin with spectrin-depleted inside-out vesicles. A 72,000 Mr proteolytic fragment of this attachment protein has been purified, which bound to spectrin in solution and competed for reassociation of spectrin with vesicles. A 215,000 Mr polypeptide has been identified as the precursor of the spectrin-binding fragment. The membrane attachment protein for spectrin was named ankyrin, and has been purified and characterized. Ankyrin has been demonstrated to be tightly associated in detergent extracts of vesicles with band 3, a major membrane-spanning polypeptide, and to bind directly to a proteolytic fragment derived from the cytoplasmic domain of band 3. Ankyrin is thus an example of a protein that directly links a cytoplasmic structural protein to an integral membrane protein. The organization of the erythrocyte membrane has implications for more complex cell types since immunoreactive forms of ankyrin distinct from myosin or filamin have been detected by radioimmunoassay in a variety of cells and tissues. Indirect immunofluorescent staining of cultured cells reveals immunoreactive forms of ankyrin in a cytoplasmic meshwork and in a punctate distribution over nuclei. The staining changes dramatically during mitosis, with concentration of stain at the spindle poles in metaphase and intense staining of the cleavage furrow during cytokinesis.  相似文献   

3.
Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain   总被引:19,自引:0,他引:19  
Polypeptides of Mr = 190,000-220,000 that cross-react with erythrocyte ankyrin were detected in immunoblots of membranes from pig lens, pig brain, and rat liver. The cross-reacting polypeptides from brain were cleaved by chymotrypsin to fragments of Mr = 95,000 and 72,000 which are the same size as fragments obtained with erythrocyte ankyrin. The brain 72,000 Mr fragment associated with erythrocyte spectrin, and the binding occurred at the same site as that of erythrocyte ankyrin 72,000 Mr fragment since (a) brain 72,000 Mr fragment was adsorbed to erythrocyte spectrin-agarose and (b) 125I-labeled erythrocyte spectrin bound to brain 72,000 Mr fragment following transfer of the fragment from a sodium dodecyl sulfate gel to nitrocellulose paper, and this binding was displaced by erythrocyte ankyrin 72,000 Mr fragment. Brain 72,000 Mr fragment was purified about 400-fold by selective extraction and by continuous chromatography on columns attached in series containing DEAE-cellulose followed by erythrocyte spectrin coupled to agarose, and finally hydroxylapatite. The brain 72,000 Mr fragment was not derived from contaminating erythrocytes since peptide maps of pig brain and pig erythrocyte 72,000 Mr fragments were distinct. The amount of brain 72,000 Mr fragment was estimated as 0.28% of membrane protein or 39 pmol/mg based on radioimmunoassay with 125I-labeled brain fragment and antibody against erythrocyte ankyrin. Brain spectrin tetramer was present in about the same number of copies (30 pmol/mg of membrane protein) based on densitometry of Coomassie blue-stained sodium dodecyl sulfate gels. The binding site on brain spectrin for both brain and erythrocyte ankyrin 72,000 Mr fragments was localized by electron microscopy to the midregion of spectrin tetramers about 90 nM from the near end and 110 nM from the far end. These studies demonstrate the presence in brain membranes of a protein closely related to erythrocyte ankyrin, and are consistent with a function of the brain ankyrin as a membrane attachment site for brain spectrin.  相似文献   

4.
An assay has been developed to measure association of brain ankyrin with protein site(s) in brain membranes that are independent of spectrin and tubulin, behave as integral membrane proteins, and appear to be similar in several respects to the erythrocyte anion channel. Brain membranes were depleted of ankyrin, spectrin, and other peripheral membrane proteins by a brief incubation in 0.1 M sodium hydroxide. Binding of ankyrin to these membranes fulfilled experimentally testable criteria for a specific protein-protein association. Binding was optimal at physiological values for ionic strength and pH, was of high affinity (Kd = 20-60 nM), and the capacity of 25 pmol/mg of brain membrane protein is in the same range as the number of spectrin tetramers (30 pmol/mg). The membrane-binding site(s) for brain ankyrin are likely to be related in some way to the cytoplasmic domain of the erythrocyte anion channel since binding was inhibited by the anion channel domain and by erythrocyte ankyrin. The binding site(s) for brain ankyrin were released from the membrane by limited proteolysis as active water-soluble fragments capable of inhibiting binding of ankyrin to membranes. Ankyrin-binding fragments of Mr = 40,000 and 68,000 were selectively bound to an erythrocyte ankyrin affinity column. The fragment of Mr = 40,000 is close to the size of the cytoplasmic domain of the erythrocyte anion channel. It is likely based on these results that membrane attachment proteins for ankyrin are present in brain and other tissues and that these membrane proteins have domains homologous at least in conformation to the ankyrin-binding site of the erythrocyte anion channel.  相似文献   

5.
This report demonstrates that the high affinity binding of ankyrin to two well characterized ankyrin-binding proteins, the erythrocyte anion exchanger and kidney Na+K(+)-ATPase, requires interaction of these proteins with unique sites on the ankyrin molecule. Binding of 125I-labeled erythrocyte ankyrin and ankyrin proteolytic domains was measured to the anion exchanger and Na+K(+)-ATPase incorporated into phosphatidylcholine liposomes. 125I-Labeled ankyrin associated with both anion exchanger and Na+K(+)-ATPase liposomes with a high affinity (KD ranging from 10 to 25 nM), and a capacity approaching 1 mol of ankyrin/2 mol of ATPase and 1 mol of ankyrin/8 mol of anion exchanger. The 43 kDa cytoplasmic domain of the erythrocyte anion exchanger inhibited binding of ankyrin to both the anion exchanger and Na+K(+)-ATPase liposomes with a 50% reduction at approximately 90 nM for both proteins. Further binding experiments using proteolytic domains derived from ankyrin demonstrated the following differences between the anion exchanger and Na+K(+)-ATPase in interactions with ankyrin: 1) 125I-Labeled Na+K(+)-ATPase associated with both the 89-kDa domain as well as the spectrin binding domain of ankyrin, while the anion exchanger only associated with the 89-kDa domain. 2) The 125I-labeled 89-kDa domain of ankyrin associated with Na+K(+)-ATPase liposomes with at least a 20-fold lower affinity compared with intact ankyrin while this domain associated with the anion exchanger with a 2-3-fold increase in affinity compared with intact ankyrin. 3) The 125I-labeled spectrin-binding domain of ankyrin associated with the Na+K(+)-ATPase liposomes to at least an 8-fold greater extent than to anion exchanger liposomes. The data are consistent with an independent acquisition of high affinity ankyrin binding activity for the anion exchanger and Na+K(+)-ATPase proteins through a convergent evolutionary process.  相似文献   

6.
Erythrocyte ankyrin is a member of a family of proteins that mediate the linkage between membrane proteins and the underlying spectrin-actin-based cytoskeleton. Ankyrin has been shown to interact with a variety of integral membrane proteins such as the anion exchanger, the Na+K(+)-ATPase, and the voltage-dependent sodium channel (NaCh) in brain. To understand how ankyrin interacts with these proteins and maintains its specificity and high affinity for the voltage-dependent NaCh, we have mapped the binding site on ankyrin for the NaCh by examining the binding of purified ankyrin subfragments, prepared by proteolytic cleavage, to the purified rat brain NaCh incorporated into liposomes. 125I-Labeled ankyrin and the radiolabeled 89- and 43-kDa fragments of ankyrin bind to the NaCh with high affinities and with Kd values of 34, 22, and 63 nM, respectively, and have stoichiometries of approximately 1 mol/mol NaCh. The 72-kDa spectrin binding domain is inactive and does not bind to the NaCh. Dissection of ankyrin reveals that the 43-kDa domain retains all the binding properties of native ankyrin to the NaCh. Analysis of the primary structure reveals that the NaCh binding site is confined to a domain of ankyrin consisting entirely of the 11 terminal 33-amino acid repeats and is distinct from the ankyrin domains that interact with spectrin and the Na+K(+)-ATPase.  相似文献   

7.
Brain ankyrin was purified from pig brain membranes in milligram quantities by a procedure involving affinity chromatography on erythrocyte spectrinagarose. Brain ankyrin included two polypeptides of Mr = 210,000 and 220,000 that were nearly identical by peptide mapping and were monomers in solution. Brain ankyrin and erythrocyte ankyrin are closely related proteins with the following properties in common: 1) shared antigenic sites, 2) high-affinity binding to the spectrin beta subunit at the midregion of spectrin tetramers, 3) a binding site for the cytoplasmic domain of the erythrocyte anion channel, 4) a binding site for tubulin, 5) a similar domain structure with a protease-resistant domain of Mr = 72,000 that contains the spectrin-binding activity and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg of membrane protein in demyelinated membranes based on radioimmunoassay with antibody raised against brain ankyrin and affinity purified on brain ankyrin-agarose. Brain spectrin tetramers are present at 30 pmol/mg of membrane protein. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes. Brain ankyrin also may attach microtubules to membranes independently of spectrin and has the potential to interconnect microtubules and spectrin-associated actin filaments.  相似文献   

8.
Regulatory domains of erythrocyte ankyrin   总被引:15,自引:0,他引:15  
This report provides evidence for regulatory domains of erythrocyte ankyrin that modulate associations of this protein with the anion transporter and spectrin. Two domains have been identified that are located at opposite ends of the polypeptide chain. One domain (Mr = 20,000), which is released by calpain, is primarily involved in regulation of the association of ankyrin with the anion transporter. The Mr = 195,000 fragment remaining after calpain cleavage binds to ankyrin-depleted inside-out vesicles with a 8-fold reaction in affinity, although with a 2-fold increase in number of high affinity sites. Cleavage of ankyrin by calpain induces a reduction in the frictional ratio from 1.55 to 1.33 suggesting either that the calpain-sensitive domain is present as a tail extending from a globular domain, or that upon cleavage ankyrin undergoes a major change in conformation. The other proposed regulatory domain is missing in protein 2.2, a form of ankyrin present in human erythrocytes that has a molecular weight about 29,000 smaller than ankyrin. Protein 2.2 is distinct from the calpain fragment based on peptide maps and reaction with domain-specific antibodies. The activity of the domain deleted from protein 2.2 has been inferred by comparison of ankyrin and protein 2.2, with the assumption that differences between these proteins are due to the missing domain. Protein 2.2 is an activated form of ankyrin that has a 3-fold higher affinity for spectrin and binds to twice the number of high affinity anion transporter sites. These observations suggested that removal of terminal domains of ankyrin may have a physiological role in modulation of ankyrin activity.  相似文献   

9.
Brain membranes contain an actin-binding protein closely related in structure and function to erythrocyte spectrin. The proteins that attach brain spectrin to membranes are not established, but, by analogy with the erythrocyte membrane, may include ankyrin and protein 4.1. In support of this idea, proteins closely related to ankyrin and 4.1 have been purified from brain and have been demonstrated to associate with brain spectrin. Brain ankyrin binds with high affinity to the spectrin beta subunit at the midregion of spectrin tetramers. Brain ankyrin also has binding sites for the cytoplasmic domain of the erythrocyte anion channel (band 3), as well as for tubulin. Ankyrins from brain and erythrocytes have a similar domain structure with protease-resistant domains of Mr = 72,000 that contain spectrin-binding activity, and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg membrane protein, or about twice the number of copies of spectrum beta chains. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes, and it has the potential to attach microtubules to membranes as well as to interconnect microtubules with spectrin-associated actin filaments. Another spectrin-binding protein has been purified from brain membranes, and this protein cross-reacts with erythrocyte 4.1. Brain 4.1 is identical to the membrane protein synapsin, which is one of the brain's major substrates for cAMP-dependent and Ca/calmodulin-dependent protein kinases with equivalent physical properties, immunological cross-reaction, and peptide maps. Synapsin (4.1) is present at about 60 pmol/mg membrane protein, and thus is a logical candidate to regulate certain protein linkages involving spectrin.  相似文献   

10.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

11.
The binding of human erythrocyte ankyrin (band 2.1) to the erythrocyte membrane has been characterized by reassociating purified ankyrin with ankyrin-depleted inside-out vesicles. Ankyrin reassociates at high affinity with a limited number of protease-sensitive sites located only on the cytoplasmic side of the erythrocyte membrane. Depleting the vesicles of band 4.2 does not affect their binding capacity. A 45,000-dalton polypeptide derived from the cytoplasmic portion of band 3 competitively inhibits the binding of ankyrin to inside-out vesicles. Although the bulk of band 3 molecules appear to have the potential for binding ankyrin, nly a fraction of the band 3 molecules in native membranes or in reconstituted liposomes actually provides accessible high affinity ankyrin binding sites.  相似文献   

12.
Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.  相似文献   

13.
A Tsuji  S Ohnishi 《Biochemistry》1986,25(20):6133-6139
The effects of incubation of erythrocyte ghosts under various conditions (ionic strength or addition of ankyrin, diamines, or ATP) on the lateral motion of band 3 in the membranes were studied by using the fluorescence photobleaching recovery technique. Incubation of ghosts with exogenous ankyrin increased the immobile fraction of band 3, from 0.6 in intact ghosts to 0.8-0.9 when an average of 0.2 mol of extra ankyrin was bound per mole of band 3. Ankyrin-free band 3 proteins were mobile, but their mobility was governed by the spectrin association state in the cytoskeletal network. The diffusion constant was 5.3 X 10(-11) cm2 s-1 at a spectrin tetramer mole fraction of 0.3-0.4 in 10 mM NaCl/5 mM sodium phosphate, pH 7.8, and decreased 1 order of magnitude when the tetramer fraction increased to 0.5 in higher NaCl concentration (150 mM NaCl). A similar decrease was observed when the spectrin tetramer fraction was increased by 0.2 mM spermine in 10 mM NaCl/10 mM tris(hydroxymethyl)aminomethane hydrochloride, pH 7.6. On the other hand, the rotational motion of band 3 in the membranes was not affected by the spectrin association state. Trypsin treatment of ghosts cleaved off the cytoplasmic domain of band 3 and caused a marked (8-fold) increase in the lateral mobility, D = 4.0 X 10(-10) cm2 s-1. These results indicate that the lateral mobility of ankyrin-free band 3 protein is restricted by interactions of their cytoplasmic domain with the cytoskeletal network. A model is presented that band 3 can pass the network when spectrins are in dissociated dimers and cannot pass when they are tetramers. The lateral diffusion constant is thus determined by the spectrin dimer population in the network.  相似文献   

14.
The phosphorylation of the cytoplasmic domain of band 3 by the human erythrocyte membrane kinase and casein kinase A has been investigated. The cytoplasmic domain of band 3 was released from erythrocyte vesicles by treatment with alpha-chymotrypsin and isolated as a 43,000-Da peptide. Both the membrane kinase and casein kinase A catalyzed the incorporation of about 1 mol of phosphate per mole of the band 3 fragment. The phosphorylation of the band 3 fragment by both kinases was not additive, suggesting that the two enzymes might recognize the same phosphorylation sites. Also in support of this notion was the observation that the phosphopeptide maps of the band 3 fragment phosphorylated by the two kinases were identical. Phosphoamino acid analysis of the band 3 fragment phosphorylated by casein kinase A revealed the presence of approximately equal amounts of phosphoserine and phosphothreonine and, to a lesser extent, phosphotyrosine. The interaction between the 43,000-Da peptide with ankyrin and the effect of phosphorylation on this interaction have been examined. The band 3 fragment was found to form two different types of complexes, termed C1 and C2, with ankyrin in a saturable manner. The C1 and C2 complexes contained about 1.7 and 0.43 mol of band 3 fragment per mole of ankyrin, respectively. Interestingly, these binding stoichiometries were found to be reduced by half by the phosphorylation of ankyrin but not by the phosphorylation of the band 3 fragment. The results suggest that the structure and dynamics of the erythrocyte membrane cytoskeletal network may be regulated by phosphorylation.  相似文献   

15.
In an attempt to identify potential regulatory mechanisms for erythrocyte membrane-cytoskeletal interactions, the kinetics and pH dependence of the band 3-ankyrin interaction were investigated. Association of 125I-ankyrin with KI-stripped inside-out erythrocyte membrane vesicles was found to proceed in two kinetic phases. The initial, fast phase (t1/2 approximately 15-30 min) involved predominantly the binding of ankyrin to low affinity sites (KD approximately 130 nM) in a pH-dependent manner. The apparent pKa values describing this reversible pH dependence (7.2 +/- 0.1 and 9.2 +/- 0.1) defined states of band 3 with high, moderate, and no capacity to bind ankyrin (in order of increasing pH). Since the cytoplasmic domain of band 3 also exists in 3 distinct conformational states characterized by apparent pKa values of 7.2 and 9.2, it was hypothesized that the reversible structural equilibrium in band 3 could influence ankyrin binding. The second or slow phase of ankyrin binding to band 3 involved the conversion of low to high affinity sites (KD approximately 13 nM). This phase, which was largely temperature and pH independent, required roughly an order of magnitude longer to reach completion than the fast phase. Unfortunately, even though the slow phase could be cleanly separated from the fast phase at low pH, insufficient data were available to formulate a physical interpretation of its origin. Significantly, however, even after completion of the slow phase under the most quantitative binding conditions identified, a maximum of only 26% of the band 3 was found to bind ankyrin in situ. Although higher ankyrin-band 3 stoichiometries may be achievable with the isolated cytoplasmic fragment of band 3, we interpret the above 1:4 stoichiometry to suggest that the tetramer of band 3 constitutes the predominant ankyrin binding oligomer of band 3 on the membrane.  相似文献   

16.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

17.
Phosphorylation of ankyrin decreases its affinity for spectrin tetramer   总被引:5,自引:0,他引:5  
The effects of phosphorylation on the interaction between spectrin and ankyrin were investigated. Spectrin and ankyrin were phosphorylated using purified human erythrocyte membrane and cytosolic (casein kinase A) kinases. These two kinases have similar properties as well as activities toward spectrin and ankyrin. Both kinases catalyzed the incorporation of about 2 mol of phosphate/mol of spectrin and about 7 mol of phosphate/mol of ankyrin. These phosphates were incorporated primarily into seryl and threonyl residues of the proteins. The phosphopeptide maps of ankyrin phosphorylated by the membrane kinase and casein kinase A were identical. Binding studies indicate that ankyrin exhibits different affinities for spectrin dimers (KD = 2.5 +/- 0.9 X 10(-6) M) and tetramers (KD = 2.7 +/- 0.8 X 10(-7) M). These dissociation constants were not appreciably affected by the phosphorylation of spectrin. On the other hand, phosphorylation of ankyrin was found to significantly reduce its affinity for either phosphorylated or unphosphorylated spectrin tetramers (KD = 1.2 +/- 0.1 X 10(-6) M) but not spectrin dimers (KD = 2.5 +/- 0.4 X 10(-6) M). The same results were obtained using either the membrane kinase or casein kinase A as the phosphorylating enzyme. The above observation suggests that ankyrin phosphorylation may provide an important mechanism for the regulation of the erythrocyte membrane cytoskeletal network.  相似文献   

18.
We have characterized the association of the intermediate filament protein, vimentin, with the plasma membrane, using radioiodinated lens vimentin and various preparations of human erythrocyte membrane vesicles. Inside-out membrane vesicles (IOVs), depleted of spectrin and actin, bind I125-vimentin in a saturable manner unlike resealed, right-side-out membranes which bind negligible amounts of vimentin in an unsaturable fashion. The binding of vimentin to IOVs is abolished by trypsin or acid treatment of the vesicles. Extraction of protein 4.1 or reconstitution of the membranes with purified spectrin do not basically affect the association. However, removal of ankyrin (band 2.1) significantly lowers the binding. Upon reconstitution of depleted vesicles with purified ankyrin, the vimentin binding function is restored. If ankyrin is added in excess the binding of vimentin to IOVs is quantitatively inhibited, whereas protein 4.1, the cytoplasmic fragment of band 3, band 6, band 4.5 (catalase), or bovine serum albumin do not influence it. Preincubation of the IOVs with a polyclonal anti-ankyrin antibody blocks 90% of the binding. Preimmune sera and antibodies against spectrin, protein 4.1, glycophorin A, and band 3 exhibit no effect. On the basis of these data, we propose that vimentin is able to associate specifically with the erythrocyte membrane skeleton and that ankyrin constitutes its major attachment site.  相似文献   

19.
Purified human erythrocyte spectrin is able to form large oligomeric species without the collaboration of any other proteins. This reversible self-assembly process is both temperature and concentration dependent and seems to be mediated by the same kinds of low affinity noncovalent associations between spectrin monomers that promote tetramer formation. Low ionic strength extracts of erythrocyte membranes also contain these oligomeric species. These results support the idea that spectrin oligomers and the factors that regulate their formation may be responsible for both the stability and the versatility of the erythrocyte membrane cytoskeleton. It is postulated that the high concentrations of spectrin necessary for oligomerization are maintained in vivo by a high-affinity interaction with ankyrin. Such a coupling of high and low affinity interactions in multifunctional proteins may have significant implications for membrane structure and function.  相似文献   

20.
Ankyrin is an essential link between cytoskeletal proteins, such as spectrin, and membrane bound proteins, such as protein 3, the erythrocyte anion exchanger. Although the amino acid structure of human ankyrin is known, the functional regions have been only partially defined. Sequence comparisons between mouse and human ankyrin offer one mechanism of identifying highly conserved regions that probably have functional significance. We report the isolation and sequencing of a series of overlapping murine erythroid ankyrin (Ank-1) cDNAs from spleen and reticulocyte libraries (total span 6238 bp) and identify potentially important regions of murine-human reticulocyte ankyrin homology. Comparison of the predicted peptide sequences of mouse and human erythroid ankyrins shows that these ankyrins are highly conserved in both the N-terminal, protein 3 binding domain (96% amino acid identity) and in the central spectrin-binding domain (97% identity), but differ in the C-terminal regulatory domain (79% identity). However, the C-terminal regulatory domain contains two regions of peptide sequence that are perfectly conserved. We postulate these regions are important in the regulatory functions of this domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号