首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we reported a zebrafish iroquois gene, ziro3, and its expression during early embryogenesis (Mech. Dev. 87 (1999) 165). In the present study, we have isolated two novel zebrafish iroquois genes, ziro1 and ziro5, homologs of mouse Irx1 and mouse Irx5, respectively. The expression of both genes is initiated in dorsal neuroectoderm and mesoderm during gastrulation. Later, their expression appears in the central nervous system (CNS), excluding the telencephalon and most of the diencephalon. ziro1 expression is complementary to that of ziro3 in the notochord and later in the gut. In contrast, ziro5 expression mostly overlaps with that of ziro3. Interestingly, all three iroquois zebrafish genes are expressed in the notochord while only Irx3 is active in the mouse notochord. Their expression in later stages of embryogenesis was also compared.  相似文献   

2.
Zhao CL  Yang QW  Hu JR  Ye D  Gong WM  Lu HY  Xu ZY  Zhang XP  Song P 《动物学研究》2010,31(5):469-475
In an in silico search for gonand specific expressed genes, we have identified zRAP55 which is enriched in the ovary of zebrafish . zRAP55 encodes a protein of 382 amino acids with a highly conserved Lsm domain. zRAP55 protein shares more than 56% identities with that of other vertebrate species. RT-PCR results show that it is predominantly expressed in the ovary. In situ hybridization and immunohistochemistry studies reveal that zRAP55 is ubiquitously dispersed throughout the cytoplasm of stages I and II oocytes, whereas no expression is observed in stages III and IV oocytes. As an RNA associated protein, zRAP55 might function in the control of protein translation at the early stages of oogenesis in zebrafish.  相似文献   

3.
Du C  Niu R  Chu E  Zhang P  Lin X 《Journal of biochemistry》2006,139(5):913-920
The thymidylate synthase (TS), an important target for many anticancer drugs, has been cloned from different species. But the cDNA property and function of TS in zebrafish are not well documented. In order to use zebrafish as an animal model for screening novel anticancer agents, we isolated TS cDNA from zebrafish and compared its sequence with those from other species. The open reading frame (ORF) of zebrafish TS cDNA sequence was 954 nucleotides, encoding a 318-amino acid protein with a calculated molecular mass of 36.15 kDa. The deduced amino acid sequence of zebrafish TS was similar to those from other organisms, including rat, mouse and humans. The zebrafish TS protein was expressed in Escherichia coli and purified to homogeneity. The purified zebrafish TS showed maximal activity at 28 degrees C with similar K(m) value to human TS. Western immunoblot assay confirmed that TS was expressed in all the developmental stages of zebrafish with a high level of expression at the 1-4 cell stages. To study the function of TS in zebrafish embryo development, a short hairpin RNA (shRNA) expression vector, pSilencer 4.1-CMV/TS, was constructed which targeted the protein-coding region of zebrafish TS mRNA. Significant change in the development of tail and epiboly was found in zebrafish embryos microinjected pSilencer4.1-CMV/TS siRNA expression vector.  相似文献   

4.
5.
In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.  相似文献   

6.
7.
8.
Teh C  Chong SW  Korzh V 《BioTechniques》2003,35(5):950-954
The zebrafish is widely used for functional studies of vertebrate genes. It is accessible to manipulations during all stages of embryogenesis because the embryo develops externally and is optically transparent. However, functional studies conducted on the zebrafish have been generally limited to the earliest phase of activity of the gene of interest, which is a limitation in studies of genes that are expressed at various stages of embryonic development. It is therefore necessary to develop methods that allow for the modulation of gene activity during later stages of zebrafish development while leaving earlier functions intact. We have successfully electroporated the green fluorescent protein (GFP) reporter gene into the neural tube of the zebrafish embryo in a unidirectional or bilateral manner. This approach can be used for the functional analysis of the late role of developmental genes in the neural tube of zebrafish embryo and larvae.  相似文献   

9.
Retinoic acid signaling is important for patterning the central nervous system, paired appendages, digestive tract, and other organs. To begin to investigate retinoic acid signaling in zebrafish, we determined orthologies between zebrafish and tetrapod retinoic acid receptors (Rars) and examined the expression patterns of rar genes during embryonic development. Analysis of phylogenies and conserved syntenies showed that the three cloned zebrafish rar genes include raraa and rarab, which are co-orthologs of tetrapod Rara, and rarg, which is the zebrafish ortholog of tetrapod Rarg. We did not, however, find an ortholog of Rarb. RNA in situ hybridization experiments showed that rarab and rarg, are maternally expressed. Zygotic expression of raraa occurs predominantly in the hindbrain, lateral mesoderm, and tailbud. Zygotic expression of rarab largely overlaps that of raraa, except that in later stages rarab is expressed more broadly in the brain and in the pectoral fin bud and pharyngeal arches. Zygotic expression of zebrafish rarg also overlaps the other two genes, but it is expressed more strongly in the posterior hindbrain beginning in late somitogenesis as well as in neural crest cells in the pharyngeal arches. Thus, these three genes have largely overlapping expression patterns and a few gene-specific expression domains. Knowledge of these expression patterns will guide the interpretation of the roles these genes play in development.  相似文献   

10.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.  相似文献   

11.
为进一步探究鱼类性别决定的相关机理, 增加对鱼类性控基因表达和功能的认识, 克隆斑马鱼fem-1c 基因并对其进行表达分析。研究采用RACE-PCR方法从斑马鱼卵巢组织cDNA中克隆了fem-1c的cDNA全长序列, 其大小为2701 bp, 编码618个氨基酸。生物信息学分析显示, 斑马鱼FEM-1C蛋白包含9个ANK结构域、2个TPR结构域和2个低复杂性区域, 与其他脊椎动物的FEM-1C蛋白序列保守性较高。脊椎动物的fem-1c与tmed7、trim36等邻近的45个基因具有保守的同线性关系。半定量RT-PCR实验结果显示斑马鱼fem-1c在受精后17d开始表达, 并特异地表达于成体卵巢组织中。RNA原位杂交结果显示, fem-1c基因mRNA定位于卵巢组织的Ⅰ期和Ⅱ期卵母细胞胞质中。fem-1c的时空表达特征暗示其在斑马鱼卵巢分化中具有重要作用。    相似文献   

12.
Muto E  Tabata Y  Taneda T  Aoki Y  Muto A  Arai K  Watanabe S 《Biochimie》2004,86(8):523-531
We isolated Veph, a novel gene encoding a pleckstrin homology (PH) domain-containing protein from a mouse. Veph was strongly expressed in the embryonic brain, and its expression level gradually decreased in later stages. In situ hybridization analysis of sectioned embryo brains revealed that Veph was expressed exclusively in the ventricular zone. We then isolated a zebrafish orthologue of Veph (zVeph). As observed in the mouse gene, zVeph was expressed in the ventricular zone of developing brain and spinal cord. Blockage of zVeph expression by injection of zVeph-specific morpholino antisense oligo into zebrafish fertilized eggs resulted in a defect in the midbrain-hindbrain boundary and otic vesicle formation, suggesting the important function of zVeph in central nervous system (CNS) development. On the other hand, homozygous knockout mice of Veph showed no significant defect in the CNS, pointing to possible different functions of Veph between the zebrafish and mouse.  相似文献   

13.
The expression pattern of zebrafish hoxa1a mRNA during embryonic development was studied. Herein, we show that hoxa1a mRNA is expressed in the ventral region of both the midbrain and anterior hindbrain during the developmental period from the pharyngula to the protruding-mouth stages via whole-mount in situ hybridization. Furthermore, double-labeling with anti-zHu antibody confirms that the zebrafish hoxa1a gene is expressed in neuronal cells. The observed temporal and spatial distributions of zebrafish hoxa1a mRNA differ greatly from the expression patterns of zebrafish hoxb1a and hoxb1b paralagous genes. In addition, in embryos injected with mouse ihh mRNA, hoxa1a-expressing cells increase in number with a dorsalized expression pattern in the midbrain.  相似文献   

14.
通过性腺特异性表达基因的筛选,作者发现了一个在斑马鱼卵巢中富集的基因zRAP55。zRAP55蛋白由382个氨基酸组成并含有一个高度保守的Lsm区。zRAP55蛋白与其他脊椎动物一致性在56%以上。RT-PCR结果表明,zRAP55优势表达于卵巢中。原位杂交和免疫组织化学结果表明:在Ⅰ期和Ⅱ期卵母细胞中,zRAP55的阳性信号强烈,均匀地分布于整个细胞质中,但是在Ⅲ期和Ⅳ期卵母细胞中均检测不到信号。作为一个RNA相关蛋白,zRAP55可能在早期卵母细胞中具有调节蛋白质翻译的重要作用。  相似文献   

15.
Maternal Activin-like proteins, a subgroup of the TGF-beta superfamily, play a key role in establishing the body axes in many vertebrates, but their role in teleosts is unclear. At least two maternal Activin-like proteins are expressed in zebrafish, including the Vg1 orthologue, zDVR-1, and the nodal-related gene, Squint. Our analysis of embryos lacking both maternal and zygotic squint function revealed that maternal squint is required in some genetic backgrounds for the formation of dorsal and anterior tissues. Conditional inactivation of the ALK4, 5 and 7 receptors by SB-505124 treatment during the cleavage stages ruled out a role for maternal Squint, zDVR-1, or other Activin-like ligands before the mid-blastula transition, when the dorsal axis is established. Furthermore, we show that maternal Squint and zDVR-1 are not required during the cleavage stages to induce zygotic nodal-related gene expression. nodal-related gene expression decreases when receptor inhibition continues past the mid-blastula transition, resulting in a progressive loss of mesoderm and endoderm. We conclude that maternally expressed Activin-like signals do not act before the mid-blastula transition in zebrafish, but do have a variably penetrant role in the later stages of axis formation. This contrasts with the early role for these signals during Xenopus development.  相似文献   

16.
17.
18.
Intelectin family, also called the X-lectin family, is a newly discovered gene family involved in development and innate immunity. However, no research was carried out for this gene family in the model organism zebrafish. Here we present the first characterization of seven zebrafish intelectins (zINTLs) and the first systematic comparative analysis of intelectins from various species in order to provide some clues to the function and evolution of this gene family. We examined the expression patterns of zINTLs in various development stages, normal adults, and Aeromonas salmonicida infected adults. Results showed that zINTL1–3 were highly expressed in one or several adult tissues. zINTL4–7, however, were expressed at quite low levels both in adults and various development stages, and some of them showed relaxation of functional constrains as revealed by Ka/Ks calculation. Of the seven zINTLs, zINTL3 was expressed predominantly in the liver and highly up-regulated upon infection, suggesting its important roles in immunity. Based on the characterization of zebrafish intelectins, we then conducted a systematic survey of intelectin members in various species and made comparative analyses. We found out that intelectin family may be a deuterostome specific gene family; and their expression patterns, quaternary structures and glycosylations vary considerably among various species, though their sequences are highly conserved. Moreover, these varied features have evolved multiple times independently in different species, resulting in species-specific protein structures and expression patterns.  相似文献   

19.
Members of the Rh glycoprotein family have been shown to be involved in ammonia transport in a variety of species. Here we show that zebrafish Rhcg1, a member of the Rh glycoprotein family, is highly expressed in the yolk sac, gill, and renal tubules. Molecular cloning and characterization indicate that zebrafish Rhcg1 shares 82% sequence identity with the pufferfish ortholog fRhcg1. RT-PCR, combined with in situ hybridization, revealed that Rhcg1 is first expressed in vacuolar-type H(+)-ATPase/mitochondrion-rich cells (vH-MRC) on the yolk sac of larvae at 3 days postfertilization (dpf) and later in vH-MRC-like cells in the gill at 4-5 dpf. Ammonia excretion from zebrafish larvae increased in parallel with the expression of Rhcg1. At larval stages, Rhcg1 mRNA was detected only on the yolk sac and gill; however, the kidney, as well as the gill, becomes a major site of Rhcg1 expression in adults. Using a zebrafish Tol2 transgenic line whose vH-MRC are labeled with green fluorescent protein (GFP) and an antibody against zebrafish Rhcg1, we demonstrate that Rhcg1 is located in the apical regions of 1) vH-MRC on the yolk sac and vH-MRC-like cells (cell population with the expression of Rhcg1 and GFP) in the gill and 2) cells in the renal distal tubule and intercalated cell-like cells in the collecting duct of the kidney. Remarkably, expression of Rhcg1 mRNA at the larval stage was changed by environmental ionic strength. These results suggest that roles of zebrafish Rhcg1 are not solely ammonia secretion to eliminate nitrogen from the gill.  相似文献   

20.
Dominant mutations in presenilin1 (PS1) and presenilin2 (PS2) are a major cause of early-onset Alzheimer's disease. In this report we analyze the expression of the zebrafish presenilin1 (Psen1) and presenilin2 (Psen2) proteins during embryogenesis. We demonstrate that Psen1 and Psen2 holoproteins are relatively abundant in zebrafish embryos and are proteolytically processed. Psen1 is maternally expressed, whereas Psen2 is expressed at later stages during development. The Psen1 C-terminal proteolytic fragment (CTF) is present at varying levels during embryogenesis, indicating the existence of developmental control mechanisms regulating its production. We examine the codependency of Psen1 and Psen2 expression during early embryogenesis. Forced overexpression of psen2 increases expression of Psen2 holoprotein, but not the N-terminal fragment (NTF), indicating that levels of Psen2 NTF are strictly controlled. Overexpression of psen2 did not alter levels of Psen1 holoprotein, CTF, or higher molecular weight complexes. Reduction of Psen1 activity in zebrafish embryos produces similar developmental defects to those seen for loss of PS1 activity in knockout mice. The relevance of these results to previous work on presenilin protein regulation and function are discussed. Our work shows that zebrafish embryos are a valid and valuable system in which to study presenilin interactions, regulation, and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号