首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水稻突变体与功能基因组学   总被引:29,自引:0,他引:29  
突变体是功能基因组学研究的重要材料。本文综述了水稻突变体的创制方法、变异的机制、水稻突变体,基因分类和数量、克隆的水稻重要基因的研究进展,包括1698个水稻突变体,基因的分类和43个克隆的水稻突变体基因,并提出了利用水稻突变体的展望。  相似文献   

2.
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T‐DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene‐rich regions, resulting in direct gene knockout or activation of genes within 20–30 kb up‐ and downstream of the T‐DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T‐DNA‐tagged rice mutant population. We also discuss important features of T‐DNA activation‐ and knockout‐tagging and promoter‐trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high‐throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.  相似文献   

3.
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.  相似文献   

4.
5.
Contribution of the Tos17 retrotransposon to rice functional genomics   总被引:16,自引:0,他引:16  
The ongoing international efforts of the Rice Genomic Sequencing Project have already generated a large amount of sequence data. The next important challenge will be to construct saturation mutant lines for the functional analysis of all of the genes revealed by this effort in the context of the rice plant as a whole. Recently, the endogenous retrotransposon Tos17 has been shown to be an efficient insertional mutagen. Considering the ease of mutagenesis with Tos17 and its multiple-copy nature, saturation mutagenesis with this retrotransposon should be feasible in rice. Ongoing reverse-genetics studies, such as the PCR-screening of mutants and cataloguing of mutants by sequencing Tos17-insertion sites, as well as traditional forward-genetics studies, have clearly demonstrated that the Tos17 system can significantly contribute to the functional genomics of rice.  相似文献   

6.
Jung KH  Lee J  Dardick C  Seo YS  Cao P  Canlas P  Phetsom J  Xu X  Ouyang S  An K  Cho YJ  Lee GC  Lee Y  An G  Ronald PC 《PLoS genetics》2008,4(8):e1000164
Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families.  相似文献   

7.
Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice functional genomics tools and resources. The programmes were also aimed at cloning and functional analyses of a number of genes controlling important agronomic traits from rice. National and international collaborations on rice functional genomics study are accelerating rice gene discovery and application.  相似文献   

8.
Splicing and alternative splicing in rice and humans   总被引:1,自引:0,他引:1  
Rice is a monocot gramineous crop, and one of the most important staple foods. Rice is considered a model species for most gramineous crops. Extensive research on rice has provided critical guidance for other crops, such as maize and wheat. In recent years, climate change and exacerbated soil degradation have resulted in a variety of abiotic stresses, such as greenhouse effects, lower temperatures, drought, floods, soil salinization and heavy metal pollution. As such, there is an extremely high demand for additional research, in order to address these negative factors. Studies have shown that the alternative splicing of many genes in rice is affected by stress conditions, suggesting that manipulation of the alternative splicing of specific genes may be an effective approach for rice to adapt to abiotic stress. With the advancement of microarrays, and more recently, next generation sequencing technology, several studies have shown that more than half of the genes in the rice genome undergo alternative splicing. This mini-review summarizes the latest progress in the research of splicing and alternative splicing in rice, compared to splicing in humans. Furthermore, we discuss how additional studies may change the landscape of investigation of rice functional genomics and genetically improved rice. [BMB Reports 2013; 46(9): 439-447]  相似文献   

9.
10.
Since the recent sequencing of the rice genome, the functional identification of rice genes has become increasingly important. Various tagged lines have been generated; however, the number of tagged genes available is not sufficient for extensive study of gene function. To help identify the functions of genes in rice, we developed a Gateway vector, pANDA, for RNA interference of rice genes. This vector can be used for Agrobacterium transformation of rice and allows easy and fast construction of efficient RNAi vectors. In the construct, hairpin RNA derived from a given gene is transcribed from a strong maize ubiquitin promoter, and an intron is placed 5' upstream of inverted repeats to enhance RNA expression. Analysis of rice genes using this vector showed that suppression of mRNA expression was observed in more than 90% of transgenic plants examined, and short interfering RNA indicative of RNA silencing was detected in each silenced plant. A similar vector, pANDA-mini, was also developed for direct transfer into leaf cells or protoplasts. This vector can be used for transient suppression of gene function in rice. These vectors should help identify the functions of rice genes whose tagged mutants are not available at present and complement existing methods for functional genomics of rice.  相似文献   

11.
Wan S  Wu J  Zhang Z  Sun X  Lv Y  Gao C  Ning Y  Ma J  Guo Y  Zhang Q  Zheng X  Zhang C  Ma Z  Lu T 《Plant molecular biology》2009,69(1-2):69-80
  相似文献   

12.
Rice blast disease is one of the most devastating diseases of rice (Oryza sativa L.) caused by the fungus Magnaporthe oryzae (M. oryzae), and neck blast is the most destructive phase of this illness. The underlying molecular mechanisms of rice blast resistance are not well known. Thus, we collected 150 rice varieties from different ecotypes in China and assessed the rice blast resistances under the natural conditions that favoured disease development in Jining, Shandong Province, China in 2017. Results showed that 92 (61.3%) and 58 (38.7%) rice varieties were resistant and susceptible to M. oryzae, respectively. Among the 150 rice varieties screened for the presence of 13 major blast resistance (R) genes against M. oryzae by using functional markers, 147 contained one to eight R genes. The relationship between R genes and disease response was discussed by analysing the phenotype and genotype of functional markers. The results showed that the rice blast resistance gene Pita was significantly correlated with rice blast resistance. Our results provided a basis for the further understanding of the distribution of 13 major R genes of rice blast in the germplasm resources of the tested rice varieties, and were meaningful for rice disease resistance breeding.  相似文献   

13.
With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.  相似文献   

14.
Rice is known to be one of the most important crops for human consumption. As the model cereal crop, large-scale sequencing of rice genome must play quite important roles both in theoretical research and practical application in rice breeding, which announces the opening of another new way to resolve the world food crisis. At present, the emphasis of rice genome research has been transferred from structure genomics to functional analysis. The discovery of new genes and annotation of gene function was believed to be an important issue in functional genomics research. In this article, the sequencing and functional research of the rice genome were reviewed. These results may provide some useful clues for rice genetic engineering and breeding practices.  相似文献   

15.
水稻基因组测序及基因功能的鉴定   总被引:6,自引:0,他引:6  
刘庆坡  薛庆中 《遗传学报》2006,33(8):669-677
水稻是重要的粮食作物。作为单子叶模式植物,水稻基因组的大规模测序具有巨大的理论价值和现实意义。目前已获得了籼稻“93—11”和粳稻“日本晴”高质量的基因组数据,这为在基因组水平上深入研究其生长、发育、抗病和高产等的遗传机理提供了便利,从而为进一步解决世界粮食危机提供了新的突破口和契机。随着水稻基因组计划的顺利结束,其研究重心也已由建立高分辨率的遗传、物理和转录图谱为主的结构基因组学转向基因功能的研究。结构基因组学研究获得的大量序列数据为揭示和开发功能基因开辟了广阔的前景。目前,利用图位克隆和电子克隆等方法已成功分离了多个水稻抗病、抗虫、抗逆境、抗倒伏、高产、优质等重要农艺性状相关的基因,对培育水稻新品种,促进农业的可持续发展意义重大。据估计,水稻至少拥有3.7万个非转座因子相关的蛋白编码基因。因此,完成全基因组序列测定后,重要基因功能的鉴定已成为当前基因组学研究的主要目标。反向遗传学、大规模基因功能表达谱分析和蛋白质组研究等策略已在研究水稻重要基因的功能方面发挥了重要作用。文章综述了水稻基因组测序及基因功能研究的现状,并就新基因发掘和基因功能注释的方法作了评述,期待为水稻遗传工程和育种实践提供参考。  相似文献   

16.
水稻SBP基因家族的生物信息学分析(英文)   总被引:2,自引:0,他引:2  
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SBP)转录因子家族是植物特有的一类转录因子。本文确定了20水稻基因组上编码的SBP基因。通过分类,染色体定位,保守区确定,亲缘关系,以及水稻SBP家族中的重复基因及该家族成员形成蛋白二聚体的可能性进行分析,其次利用了Affymetrix水稻基因组芯片数据,对所有这些基因的表达谱进行了分析。结果表明,水稻SBP基因在花和种子的发育过程中可能发挥重要作用,而其对环境胁迫却不敏感。这对进一步研究SBP的功能提供了有价值的线索和思路。  相似文献   

17.
条斑病是水稻(Oryza sativa)中的常见病害, 已经对我国粮食的高产稳产造成严重威胁。以典型籼稻台中本地1号与粳稻春江06的杂交F1代花药培养双单倍体群体(DH)为材料, 用Xoc BLS256进行人工接菌, 对双亲及群体各株系的病斑长度进行测量和量化分析; 同时利用该群体业已构建的加密遗传图谱对病斑表型数据进行QTL作图分析。结果在水稻第2、4、5和8号染色体上共检测到4个效应值能区分开的QTL。对2号与5号染色体上2个较大的QTL区间内抗条斑病相关基因进行了表达分析, 结果表明这些基因在处理前后出现了不同程度的表达差异, 暗示这些基因可能是响应春江06与台中本地1号条斑病抗性差异的目标基因。研究结果为进一步克隆水稻条斑病抗性QTL奠定了重要基础。  相似文献   

18.
突变体是功能基因组学研究的重要材料。本文综述了水稻突变体的创制方法、变异的机制、水稻突变体/基因分类和数量、克隆的水稻重要基因的研究进展, 包括1 698个水稻突变体/基因的分类和43个克隆的水稻突变体基因, 并提出了利用水稻突变体的展望。  相似文献   

19.
The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MAPK genes have been Identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MAPK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MAPK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MAPK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MAPK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MAPK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MAPK signaling pathway in rice crops for the Improvement of agronomically important traits.  相似文献   

20.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 nuclease (Cas9) system depends on a guide RNA (gRNA) to specify its target. By efficiently co‐expressing multiple gRNAs that target different genomic sites, the polycistronic tRNA‐gRNA gene (PTG) strategy enables multiplex gene editing in the family of closely related mitogen‐activated protein kinase (MPK) genes in Oryza sativa (rice). In this study, we identified MPK1 and MPK6 (Arabidopsis AtMPK6 and AtMPK4 orthologs, respectively) as essential genes for rice development by finding the preservation of MPK functional alleles and normal phenotypes in CRISPR‐edited mutants. The true knock‐out mutants of MPK1 were severely dwarfed and sterile, and homozygous mpk1 seeds from heterozygous parents were defective in embryo development. By contrast, heterozygous mpk6 mutant plants completely failed to produce homozygous mpk6 seeds. In addition, the functional importance of specific MPK features could be evaluated by characterizing CRISPR‐induced allelic variation in the conserved kinase domain of MPK6. By simultaneously targeting between two and eight genomic sites in the closely related MPK genes, we demonstrated 45–86% frequency of biallelic mutations and the successful creation of single, double and quadruple gene mutants. Indels and fragment deletion were both stably inherited to the next generations, and transgene‐free mutants of rice MPK genes were readily obtained via genetic segregation, thereby eliminating any positional effects of transgene insertions. Taken together, our study reveals the essentiality of MPK1 and MPK6 in rice development, and enables the functional discovery of previously inaccessible genes or domains with phenotypes masked by lethality or redundancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号