首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
3.
The G protein-coupled delta opioid receptor gene (dor) is temporally and spatially expressed during development. The DOR receptor plays important roles in diverse biological processes, including pain control, immune functions, and cell survival. We previously found that PI3K/Akt/NF-kappaB signaling is important in the regulation of dor gene expression during nerve growth factor (NGF)-induced differentiation of PC12h cells, which prompted us to examine whether NF-kappaB p65 is directly or indirectly involved in the regulation of dor promoter activity. In this study, deletional and functional analysis of the dor promoter revealed a 94-bp NGF-responsive fragment upstream of the dor promoter region and involvement of NF-kappaB in regulating the promoter activity. Chromatin immunoprecipitation assays demonstrated that NF-kappaB p65 is directly bound to the dor promoter and such binding is related to NGF/PI3K signaling. Together, the results show that direct association of p65 with the promoter is important in NGF-induced dor promoter activity.  相似文献   

4.
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75(NTR) and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer's disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild-type and cleavage-resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M-proNGF and NGF bound to p75(NTR) with similar affinities, whilst M-proNGF had a lower affinity than NGF for TrkA. M-proNGF behaved neurotrophically, albeit less effectively than NGF. M-proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M-proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M-proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M-proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75(NTR) : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.  相似文献   

5.
6.
7.
NGF can regulate nitric oxide synthase (NOS) expression and nitric oxide (NO) can modulate NGF-mediated neurotrophic responses. To investigate the role of NO in NGF-activated expression of cholinergic phenotype, PC12 cells were treated with either the nonselective NOS inhibitor L-NAME (N (omega)-nitro-L-arginine methylester) or the inducible NOS selective inhibitor MIU (s-methylisothiourea), and the effect on NGF-stimulated ChAT mRNA levels and ChAT specific activity was determined. NGF increased steady-state levels of mRNA and protein for both inducible and constitutive isozymes of NOS in PC12 cells, and led to enhanced NOS activity and NO production. MIU and, to a lesser extent, L-NAME blocked neurite outgrowth in nerve growth factor (NGF)-treated PC12 cells. Both L-NAME and MIU attenuated NGF-mediated increases in choline transferase (ChAT)-specific activity and prevented the increase in expression of ChAT mRNA normally produced by NGF treatment of PC12 cells. The present study indicates that NO may be involved in the modulation of signal transduction pathways by which NGF leads to increased ChAT gene expression in PC12 cells.  相似文献   

8.
9.
The role of nerve growth factor (NGF) and its receptor (NGFR) in the regulation of cholinergic activity has been studied during the aging process. NGFRs were quantified in cortical membranes using a radioactive binding assay. NGF levels and choline acetyltransferase (ChAT) activity were determined in cortex, hippocampus, neostriatum, and septum. These assays were performed in both adult (6-month-old) and aged (36-month-old) rats. High- and low-affinity 125I-NGF binding sites were present in cortex of adult and aged rats. Furthermore, we observed a decrease in number and affinity of both NGFRs in aged rats. ChAT activity in these rats was lower (approximately 30%) than in adult rats in all the brain regions examined. NGF levels were not modified in cortex and hippocampus and were decreased in neostriatum (55%) and septum (35%). In conclusion, our results suggest that, during the aging process, the cholinergic impairment is related to a decrease in NGF levels in neostriatum but not in cortex and hippocampus. The reduction in level of NGF protein in septum could be due to a decrease in number of high-affinity 125I-NGF binding sites.  相似文献   

10.
11.
12.
13.
Nerve growth factor (NGF) promotes neuronal survival and differentiation and stimulates neurite outgrowth. NGF is synthesized as a precursor, proNGF, which undergoes post-translational processing to generate mature beta-NGF. It has been assumed that, in vivo, NGF is largely processed into the mature form and that mature NGF accounts for the biological activity. However, we recently showed that proNGF is abundant in CNS tissues whereas mature NGF is undetectable, suggesting that proNGF has biological functions beyond its role as a precursor. To determine whether proNGF exhibits biological activity, we mutagenized the precursor-processing site and expressed unprocessed, cleavage-resistant proNGF protein in insect cells. Survival and neurite outgrowth assays on murine superior cervical ganglion neurons and PC12 cells indicated that proNGF exhibits neurotrophic activity similar to mature 2.5S NGF, but is approximately fivefold less active. ProNGF binds to the high-affinity receptor, TrkA, as determined by cross-linking to PC12 cells, and is also slightly less active than mature NGF in promoting phosphorylation of TrkA and its downstream signaling effectors, Erk1/2, in PC12 and NIH3T3-TrkA cells. These data, coupled with our previous report that proNGF is the major form of NGF in the CNS, suggest that proNGF could be responsible for much of the biological activity normally attributed to mature NGF in vivo.  相似文献   

14.
15.
16.
17.
Ko HM  Jung HH  Seo KH  Kang YR  Kim HA  Park SJ  Lee HK  Im SY 《FEBS letters》2006,580(13):3006-3012
We investigated the role of p53 in nuclear factor (NF)-kappaB dependent, platelet-activating factor (PAF)-induced vascular endothelial growth factor (VEGF) expression. Transfected NF-kappaB subunits in ECV304 cells increased the tumor necrosis factor-alpha promoter activity, which was completely inhibited by p53. Transfected p53 increased p53RE promoter activity, which was completely inhibited by NF-kappaB subunits, indicating that cross-regulation occurs between NF-kappaB and p53. PAF-induced increase in VEGF expression was correlated with decreased p53 activity. These data suggest that NF-kappaB-dependency of the PAF-induced increase in VEGF expression is due to decreased p53 activity, which is reciprocally regulated by increased NF-kappaB activity.  相似文献   

18.
19.
20.
Abstract: The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors—in contrast to p75NTR-associated signaling—stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号