首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichoderma reesei RUT C-30 formed an extracellular alpha-galactosidase when it was grown in a batch culture containing lactose or locust bean gum as a carbon source. Short-chain alpha-galactosides (melibiose, raffinose, stachyose), as well as the monosaccharides galactose, dulcitol, arabinose, and arabitol, also induced alpha-galactosidase activity both when they were used as carbon sources (at a concentration of 1%) in batch cultures and in resting mycelia (at concentrations in the millimolar range). The addition of 50 mM glucose did not affect the induction of alpha-galactosidase formation by galactose. alpha-Galactosidase from T. reesei RUT C-30 was purified to homogeneity from culture fluids of galactose-induced mycelia. The active enzyme was a 50 +/- 3-kDa, nonglycosylated monomer which had an isoelectric point of 5.2. It was active against several alpha-galactosides (p-nitrophenyl-alpha-D-galactoside, melibiose, raffinose, and stachyose) and galactomannan (locust bean gum) and was inhibited by the product galactose. It released galactose from locust bean gum and exhibited synergism with T. reesei beta-mannanase. Its activity was optimal at pH 4, and it displayed broad pH stability (pH 4 to 8). Its temperature stability was moderate (60 min at 50 degrees C resulted in recovery of 70% of activity), and its highest level of activity occurred at 60 degrees C. Its action on galactomannan was increased by the presence of beta-mannanase.  相似文献   

2.
An alpha-galactosidase gene has been cloned from the human colonic Bacteroides species Bacteroides ovatus 0038. This alpha-galactosidase appears to be distinct from two previously characterized alpha-galactosidases, I and II, from the same strain and has been designated alpha-galactosidase III. Partially purified alpha-galactosidase III from Escherichia coli EM24 containing pFG61 delta SE had a pI of 7.6, as compared with the reported pI values for the known alpha-galactosidases of 5.6 for I and 6.9 for II. Its molecular weight as estimated on sodium dodecyl sulfate-polyacrylamide gels was 78,000, whereas the molecular weights of alpha-galactosidases I and II were 85,000 and 80,500, respectively. The only substrate hydrolyzed by alpha-galactosidase III was melibiose, whereas the other two alpha-galactosidases were able to degrade melibiose, raffinose, and stachyose and partially degraded guar gum. alpha-Galactosidase III had a pH optimum of 6.7 to 7.2. Finally, a single crossover insertion which disrupted the gene in the B. ovatus chromosome had no effect on expression of alpha-galactosidases I and II. Although this insertion had no effect on the ability of B. ovatus to grow in laboratory medium on any of the galactoside-containing carbohydrates tested, the insertion mutant was outcompeted by wild type when a combination of mutant and wild type was used to colonize germfree mice. Insertions on either side of the gene had the same effect. Thus, the locus which contains alpha-galactosidase III may be important for colonization in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
An alpha-galactosidase gene has been cloned from the human colonic Bacteroides species Bacteroides ovatus 0038. This alpha-galactosidase appears to be distinct from two previously characterized alpha-galactosidases, I and II, from the same strain and has been designated alpha-galactosidase III. Partially purified alpha-galactosidase III from Escherichia coli EM24 containing pFG61 delta SE had a pI of 7.6, as compared with the reported pI values for the known alpha-galactosidases of 5.6 for I and 6.9 for II. Its molecular weight as estimated on sodium dodecyl sulfate-polyacrylamide gels was 78,000, whereas the molecular weights of alpha-galactosidases I and II were 85,000 and 80,500, respectively. The only substrate hydrolyzed by alpha-galactosidase III was melibiose, whereas the other two alpha-galactosidases were able to degrade melibiose, raffinose, and stachyose and partially degraded guar gum. alpha-Galactosidase III had a pH optimum of 6.7 to 7.2. Finally, a single crossover insertion which disrupted the gene in the B. ovatus chromosome had no effect on expression of alpha-galactosidases I and II. Although this insertion had no effect on the ability of B. ovatus to grow in laboratory medium on any of the galactoside-containing carbohydrates tested, the insertion mutant was outcompeted by wild type when a combination of mutant and wild type was used to colonize germfree mice. Insertions on either side of the gene had the same effect. Thus, the locus which contains alpha-galactosidase III may be important for colonization in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Two putative alpha-galactosidase genes from rice (Oryza sativa L. var. Nipponbare) belonging to glycoside hydrolase family 27 were cloned and expressed in Escherichia coli. These enzymes showed alpha-galactosidase activity and were purified by Ni Sepharose column chromatography. Two purified recombinant alpha-galactosidases (alpha-galactosidase II and III; alpha-Gal II and III) showed a single protein band on SDS-PAGE with molecular mass of 42 kDa. These two enzymes cleaved not only alpha-D-galactosyl residues from the non-reducing end of substrates such as melibiose, raffinose, and stachyose, but also liberated the galactosyl residues attached to the O-6 position of the mannosyl residue at the reducing-ends of mannobiose and mannotriose. In addition, these enzymes clipped the galactosyl residues attached to the inner-mannosyl residues of mannopentaose. Thus, alpha-Gal II catalyzes efficient degalactosylation of galactomannans, such as guar gum and locust bean gum.  相似文献   

5.
Gao Z  Schaffer AA 《Plant physiology》1999,119(3):979-988
The cucurbits translocate the galactosyl-sucrose oligosaccharides raffinose and stachyose, therefore, alpha-galactosidase (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) is expected to function as the initial enzyme of photoassimilate catabolism. However, the previously described alkaline alpha-galactosidase is specific for the tetrasaccharide stachyose, leaving raffinose catabolism in these tissues as an enigma. In this paper we report the partial purification and characterization of three alpha-galactosidases, including a novel alkaline alpha-galactosidase (form I) from melon (Cucumis melo) fruit tissue. The form I enzyme showed preferred activity with raffinose and significant activity with stachyose. Other unique characteristics of this enzyme, such as weak product inhibition by galactose (in contrast to the other alpha-galactosidases, which show stronger product inhibition), also impart physiological significance. Using raffinose and stachyose as substrates in the assays, the activities of the three alpha-galactosidases (alkaline form I, alkaline form II, and the acid form) were measured at different stages of fruit development. The form I enzyme activity increased during the early stages of ovary development and fruit set, in contrast to the other alpha-galactosidase enzymes, both of which declined in activity during this period. In the mature, sucrose-accumulating mesocarp, the alkaline form I enzyme was the major alpha-galactosidase present. We also observed hydrolysis of raffinose at alkaline conditions in enzyme extracts from other cucurbit sink tissues, as well as from young Coleus blumei leaves. Our results suggest different physiological roles for the alpha-galactosidase forms in the developing cucurbit fruit, and show that the newly discovered enzyme plays a physiologically significant role in photoassimilate partitioning in cucurbit sink tissue.  相似文献   

6.
Alpha-galactosidase was purified from a fresh fruiting body of Ganoderma lucidum by precipitation with ammonium sulfate and column chromatographies with DEAE-Sephadex and Con A-Sepharose. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was similar to that of Mortierella vinacea alpha-galactosidase. The molecular mass of the enzyme was about 56 kDa by SDS-polyacrylamide gel electrophoresis, and about 249 kDa by gel filtration column chromatography. The optimum pH and temperature were 6.0 and 70 degrees C, respectively. The enzyme was fully stable to heating at 70 degrees C for 30 min. It hydrolyzed p-nitrophenyl-alpha-D-galactopyranoside (Km=0.4 mM) but hydrolyzed little o-nitrophenyl-alpha-D-galactopyranoside. It also hydrolyzed melibiose, raffinose, and stachyose. The enzyme catalyzed the transgalactosylation reaction which synthesized melibiose. The product was confirmed by various analyses.  相似文献   

7.
An alpha-galactosidase (alpha-D-galactoside galactohydrolase [EC 3.2.1.22]) was purified to homogeneity from the culture filtrate of Aspergillus niger. The enzyme had an apparent molecular weight of 45,000 and was a glycoprotein. Radioactive enzyme was prepared by growing cells in [14C]fructose and this enzyme was used to prepare 14C-labeled glycopeptides. The glycopeptides emerged from Sephadex G-50 between stachyose and the glycopeptide from ovalbumin. Based on calibration of the column with various-sized dextran oligosaccharides, the glycopeptides appeared to have a molecular weight of 1,200 to 1,400. Analysis of the glycopeptide(s) indicated that it contained mannose and N-acetylglucosamine (GlcNAc) in an approximate ratio of 3 or 4 to 1. Assuming that there are two GlcNAc residues in the oligosaccharide and based on the molecular weight of the glycopeptide, the oligosaccharide probably contains eight to nine sugar residues. Alks probably attached to the protein by a GlcNAc leads to asparagine linkage. The purified alpha-galactosidase was most active on raffinose (Km = 5 x 10--4 M, Vmax = 3 mumol/min per mg of protein), but also showed good activity on p-nitrophenyl-alpha-D-galactoside ans somewhat less activity on stachyose and melibitol. The enzyme also hydrolyzed guar flour and locust bean gum, but did not attack the p-nitrophenyl glycosides of beta-galactose, alpha- or beta-glucose, or alpha- or beta-mannose.  相似文献   

8.
Azotobacter vinelandii hydrolyzed melibiose exocellularly, leading to an accumulation of free glucose and galactose in the medium. This enzyme could also be induced by galactose, raffinose, and stachyose. The alpha-galactosidase activity could be detected quantitatively by using p-nitrophenyl-alpha-galactopyranoside as a substrate for intact cells. Chloramphenicol totally inhibited the induction of this enzyme. However, benzyl alcohol inhibited the secretion of this enzyme but did not inhibit the biosynthesis of the enzyme.  相似文献   

9.
T Y Wong 《Applied microbiology》1990,56(7):2271-2273
Azotobacter vinelandii hydrolyzed melibiose exocellularly, leading to an accumulation of free glucose and galactose in the medium. This enzyme could also be induced by galactose, raffinose, and stachyose. The alpha-galactosidase activity could be detected quantitatively by using p-nitrophenyl-alpha-galactopyranoside as a substrate for intact cells. Chloramphenicol totally inhibited the induction of this enzyme. However, benzyl alcohol inhibited the secretion of this enzyme but did not inhibit the biosynthesis of the enzyme.  相似文献   

10.
Lactobacillus plantarum ATCC 8014 grew on melibiose at 30 C, but not at 37 C, although it grew on galactose or lactose at either temperature. ATCC 8014 grown on lactose at 30 or 37 C accumulated melibiose slowly, suggesting that melibiose may partly be transported by a lactose transport system. A lactose-negative mutant, NTG 21, derived from ATCC 8014 was isolated. The mutant was totally deficient in lactose transport, but retained normal melibiose transport activity. In NTG 21, the melibiose transport activity was induced by melibiose at 30 C, but not at 37 C. The transport activity itself was found to be stable for at least 3 hr at 37 C, suggesting that the induction process in the cytoplasm rather than the inducer entrance is temperature-sensitive in the organism. The organism also failed to form alpha-galactosidase at 37 C when grown on melibiose. The enzyme synthesis, however, was induced by galactose in NTG 21 (and also by lactose in ATCC 8014) even at 37 C, indicating that the induction of the enzyme is essentially not temperature-sensitive. In NTG 21, melibiose transport system and alpha-galactosidase were induced by galactose, melibiose and o-nitrophenyl-alpha-D-galactopyranoside when the strain was grown at 30 C. Raffinose induced melibiose transport system only a little, while it was a good inducer for alpha-galactosidase. Inhibition studies revealed that galactose may be a weak substrate of the melibiose transport system; no inhibition was demonstrated with lactose and raffinose.  相似文献   

11.
Tachigali multijuga Benth. seeds were found to contain protein (364 mg g(-1)dwt), lipids (24 mg g(-1)dwt), ash (35 mg g(-1)dwt), and carbohydrates (577 mg g(-1)dwt). Sucrose, raffinose, and stachyose concentrations were 8.3, 3.0, and 11.6 mg g(-1)dwt, respectively. alpha-Galactosidase activity increased during seed germination and reached a maximum level at 108 h after seed imbibition. The alpha-galactosidase purified from germinating seeds had an M(r) of 38,000 and maximal activity at pH 5.0-5.5 and 50 degrees C. The enzyme was stable at 35 degrees C and 40 degrees C, but lost 79% of its activity after 30 min at 50 degrees C. The activation energy (E(a)) values for p-nitrophenyl-alpha-d-galactopyranoside (pNPGal) and raffinose were 13.86 and 4.75 kcal mol(-1), respectively. The K(m) values for pNPGal, melibiose, raffinose, and stachyose were 0.45, 5.37, 39.62 and 48.80 mM, respectively. The enzyme was sensitive to inhibition by HgCl(2), SDS, AgNO(3), CuSO(4), and melibiose. d-Galactose was a competitive inhibitor (K(i)=2.74 mM). In addition to its ability to hydrolyze raffinose and stachyose, the enzyme also hydrolyzed galactomannan.  相似文献   

12.
Bacteroides ovatus, a human colonic anaerobe, utilizes the galactomannan guar gum as a sole source of carbohydrate. Previously, we found that none of the galactomannan-degrading enzymes were extracellular, and we characterized an outer membrane mannanase which hydrolyzes the backbone of guar gum to produce large fragments. We report here the purification and characterization of a second mannanase from B. ovatus. This enzyme is cell-associated and soluble. Using ion-exchange chromatography, gel filtration, and chromatofocusing steps, we have purified the soluble mannanase to apparent homogeneity. The enzyme has a native molecular weight of 190,000 and a monomeric molecular weight of 61,000. It is distinct from the membrane mannanase not only with respect to cellular location but also with respect to stability and isoelectric point (pI of 6.9 for the membrane mannanase and pI of 4.8 for the soluble mannanase). The soluble mannanase, like the membrane mannanase, hydrolyzed guar gum to produce large fragments rather than monosaccharides. However, if galactosyl side chains were removed from the galactomannan fragments by alpha-galactosidase, both the soluble mannanase and the membrane mannanase could degrade guar gum to monosaccharides. Thus either or both of these two enzymes, working together with alpha-galactosidase, appear to be sufficient for the breakdown of guar gum to the level of monosaccharides.  相似文献   

13.
alpha-Galactosidase has been purified from Klebsiella Sp. No. PG-2, a bacterium isolated from rat small intestine, using calcium phosphate gel, DEAE-cellulose column chromatography and gel filtration technique. About 130-fold increase in specific activity was observed, the pH optimum of 6.5-7.0 characterizes the enzyme as neutral alpha-galactosidase. The optimum temperature was 37 degrees C and the energy of activation was 11,856 cal/mole. Km values obtained for raffinose, mellibose, stachyose and p-nitrophenyl-alpha-D-galactopyranoside were 20.0, 6.6 33.3 and 4.0 mM respectively. The activity was inhibited by p-CMB; iodoacetate, Ag2+, Hg2+, Cu2+, Pb2+ and galactose. Examination of the enzyme activity indicated that the enzyme is cytosolic and is inducible in nature.  相似文献   

14.
alpha-Galactosidase (EC 3.2.1.22) activity was observed in cell-free extracts of Lactobacillus fermenti, L. brevis, L. buchneri, L. cellobiosis, and L. salivarius subsp. salivarius. The cultural conditions under which the enzyme activity was detected suggest that the enzyme is constitutive and present in the soluble fraction in the cell. The enzyme preparations readily hydrolyzed melibiose and other oligosaccharides containing alpha(1 --> 6) linked galactose. Although the cell-free extracts of L. fermenti and L. brevis are negative for beta-fructofuranosidase (EC 3.2.1.26), they hydrolyzed melibiose, stachyose, and raffinose in decreasing order of activity. The beta-fructofuranosidase-positive L. buchneri, L. cellobiosis, and L. salivarius preparations hydrolyzed melibiose, raffinose, and stachyose in decreasing rates of activity. The alpha-galactosidases from different lactobacilli showed optimum activity in pH range 5.2 to 5.9. L. fermenti and L. salivarius preparations exhibited maximum activity between 40 to 44 C and 48 to 51 C, respectively, whereas a 38 to 42 C range was observed for other lactobacilli. Cell-free extract of L. cellobiosis was studied for transgalactosylase activity. When incubated with melibiose, a new compound was detected and tentatively identified as manninotriose.  相似文献   

15.
An acid α-galactosidase from the seeds of the jack fruit seed (Artocarpus integrifolia) has been purified to homogeneity by affinity chromatography on a matrix formed by cross-linking the soluble α-galactose-bearing guar seed galactomannan. The 35kDa enzyme was a homotetramer of 9.5kDa subunits. Its carbohydrate part (5.5%) was composed of galactose and arabinose. TheK m withp-nitrophenyl α-D-galactoside as substrate was 0.35 mM. TheK i values indicated inhibition by galactose, 1-O-methyl α-galactose and melibiose in the decreasing order. Among α-galactosides, the enzyme liberated galactose from melibiose, but not from raffinose or stachyose at its pH optimum (5.2). The guar seed galactomannan was however efficiently degalactosidated; limited enzyme treatment abolished the precipitability of the polysaccharide by the α-galactose-specific jack fruit seed lectin, and complete hydrolysis yielded insoluble polysaccharide. Though similar in sugar specificity and subunit assembly, α-galactosidase and the lectin coexisting in the jack fruit seed gave no indication of immunological identity.  相似文献   

16.
Two putative α-galactosidase genes from rice (Oryza sativa L. var. Nipponbare) belonging to glycoside hydrolase family 27 were cloned and expressed in Escherichia coli. These enzymes showed α-galactosidase activity and were purified by Ni Sepharose column chromatography. Two purified recombinant α-galactosidases (α-galactosidase II and III; α-Gal II and III) showed a single protein band on SDS–PAGE with molecular mass of 42 kDa. These two enzymes cleaved not only α-D-galactosyl residues from the non-reducing end of substrates such as melibiose, raffinose, and stachyose, but also liberated the galactosyl residues attached to the O-6 position of the mannosyl residue at the reducing-ends of mannobiose and mannotriose. In addition, these enzymes clipped the galactosyl residues attached to the inner-mannosyl residues of mannopentaose. Thus, α-Gal II catalyzes efficient degalactosylation of galactomannans, such as guar gum and locust bean gum.  相似文献   

17.
A number of sugars and derivatives have been tested for their ability to induce the synthesis of alpha-galactosidase from Saccharomyces carlsbergensis. Besides galactose and the substrates of the enzyme melibiose, raffinose and stachyose, D-galacturonic acid, L-arabinose, D-tagatose, methyl-alpha-D-galactoside, lactose and isopropyl-beta-D-thiogalactoside were able to act as inducers. Of these, methyl-alpha-D-galactoside, lactose, isopropyl-beta-D-thiogalactoside and L-arabinose have been shown to be gratuitous inducers with which kinetic studies of induction have been carried out. Lactose was the most efficient inducer, giving a maximal differential rate of synthesis of the enzyme of 110 mU/10(7) cells at a concentration of 180 mM, followed by L-arabinose (60 mU/10(7) cells at 40 mM), isopropyl-beta-D-thiogalactoside (43 mU/10(7) cells at 60 mM) and methyl-alpha-D-galactoside (25 mU/10(7) cells at 150 mM). The concentration of inducer required to obtain half-maximal induction was similar for lactose, L-arabinose and isopropyl-beta-D-thiogalactoside and about 5-fold higher for methyl-alpha-D-galactoside. The property of the compounds to act as inducers was compared to their ability to interact with the enzyme and the results discussed in terms of the molecular structures which are recognized by the enzyme and by the induction machinery.  相似文献   

18.
An inducible extracellular exoinulinase (isoform II) was purified from the extracellular extract of Aspergillus fumigatus by ammonium sulphate precipitation, followed by successive chromatographies on DEAE-Sephacel, Octyl-Sepharose (HIC), Sephacryl S-200, affinity chromatography on ConA-CL Agarose and Sephacryl S-100 columns. The enzyme was purified 75-folds with 3.2% activity yield from the starting culture broth. The purified isoform II was a monomeric 62 kDa protein with a pI value of 4.5. The enzyme showed maximum activity at pH 6.0 and was stable over a pH range of 4.0-7.0, whereas the optimum temperature for enzyme activity was 60 degrees C. The inulinase isoform II showed exo-inulinolytic activity and retained 72% and 44% residual activity after 12 h at 60 degrees C and 70 degrees C, respectively. The inulin hydrolysis activity was completely abolished with 5 mM Hg2+ and Fe2+, whereas K+ and Cu2+ enhanced the inulinase activity. As compared to sucrose, stachyose and raffinose the purified enzyme had a lower Km (1.25 mM) and higher catalytic center activity (Kcat = 3.47 x 10(4) min(-1)) for inulin. As compared to exoinulinase isoform I of A. fumigatus, purified earlier, the isoform II is more thermostable and is a potential candidate for commercial production of fructose from inulin.  相似文献   

19.
Galactan: galactan galactosyltransferase (GGT), an enzyme involved in the biosynthesis of the long-chain raffinose family of oligosaccharides (RFOs) in Ajuga reptans, catalyses the transfer of an alpha-galactosyl residue from one molecule of RFO to another one resulting in the next higher RFO oligomer. This novel galactinol (alpha-galactosyl-myo-inositol)-independent alpha-galactosyltransferase is responsible for the accumulation of long-chain RFOs in vivo. Warm treatment (20 degrees C) of excised leaves resulted in a 34-fold increase of RFO concentration and a 200-fold increase of GGT activity after 28 days. Cold treatment (10 degrees C/3 degrees C day/night) resulted in a 26- and 130-fold increase, respectively. These data support the role of GGT as a key enzyme in the synthesis and accumulation of long-chain RFOs. GGT was purified from leaves in a 4-step procedure which involved fractionated precipitation with ammonium sulphate as well as lectin affinity, anion exchange, and size-exclusion chromatography and resulted in a 200-fold purification. Purified GGT had an isoelectric point of 4.7, a pH optimum around 5, and its transferase reaction displayed saturable concentration dependence for both raffinose (Km = 42 mM) and stachyose (Km = 58 mM). GGT is a glycoprotein with a 10% glycan portion. The native molecular mass was 212 kDa as determined by size-exclusion chromatography. Purified GGT showed one single active band after native PAGE or IEF separation, respectively, which separated into three bands on SDS-PAGE at 48 kDa, 66 kDa, and 60 kDa. The amino acid sequence of four tryptic peptides obtained from the major 48-kDa band showed a high homology to plant alpha-galactosidase (EC 3.2.1.22) sequences. GGT differed, however, in its substrate specificity from alpha-galactosidases; it neither hydrolysed nor transferred alpha-galactosyl-groups from melibiose, galactinol, UDP-galactose, manninotriose, and manninotetrose. Galactinol, sucrose, and galactose inhibited the GGT reaction considerably at 10-50 mM.  相似文献   

20.
P.M. Dey 《Phytochemistry》1981,20(7):1493-1496
The major sugars of fresh seeds of Castanea sativa were shown to be raffinose, stachyose and sucrose. Drying seeds at 25° for 14 weeks increased the ratio raffinose: stachyose from 1.1 to 3.5, reduced sucrose content by ca 50 % and decreased total extractable α-galactosidase. The enzyme activity was resolved into two peaks, a high MW form I (apparent MW215 000) and a low MW form II (apparent MW 53 000). The latter form was predominant in the extract of fresh seeds whereas the former was the main form in the 14-week dried seeds. An increase in the amount of enzyme I was also observed when a buffered extract (pH 5.5) of fresh seeds was stored at 4°. Enzymes I and II had pH optima of 4.5 and 6, respectively. Both enzymes hydrolysed p-nitrophenyl α-d-galactoside at a much greater rate than the natural substrates raffinose, stachyose, locust bean gum and carob gum. However, enzyme I showed preference for stachyose as compared to raffinose; the opposite order was observed for enzyme II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号