首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drought resistance of rice is a complex trait and is mainly determined by mechanisms of drought avoidance and drought tolerance. The present study was conducted to characterize the genetic basis of drought resistance at reproductive stage in field by analyzing the QTLs for drought response index (DRI, normalized by potential yield and flowering time), relative yield, relative spikelet fertility, and four traits of plant water status and their relationships with root traits using a recombinant inbred population derived from a cross between an indica rice and upland rice. A total of 39 QTLs for these traits were detected with individual QTL explained 5.1–32.1% of phenotypic variation. Only two QTLs for plant water status were commonly detected in two environments, suggesting different mechanisms might exist in two types of soil conditions. DRI has no correlation with potential yield and flowering time under control, suggesting that it can be used as a good drought resistance index in field conditions. The co-location of QTLs for canopy temperature and delaying in flowering time suggested a usefulness of these two traits as indexes in drought resistance screening. Correlation and QTL congruence between root traits and putative drought tolerance traits revealed that drought avoidance (via thick and deep root traits) was the main genetic basis of drought resistance in sandy soil condition, while drought tolerance may play more role in the genetic basis of drought resistance in paddy soil condition. Therefore, both drought mechanisms and soil textures must be considered in the improvement of drought resistance at reproductive stage in rice.  相似文献   

2.
Fitness traits that determine the reproductive ability of individuals and the persistence of populations are affected by drought stress. Medicago truncatula that commonly encounters drought stress in its natural area, and for which large natural diversity and genetic tools are available, is a suitable species to investigate genetic determinism of fitness traits under stress. In a common garden, three successive cycles of short drought stress were applied after flowering, during the reproductive stage that is the most susceptible to drought for that species. Ten genotypes derived from natural populations and a mapping population were used to investigate the genetic determinism of vegetative and reproductive traits as components of fitness. A large genetic variation was observed and transgressive genotypes (more resistant or more susceptible than the parental genotypes) were found in the mapping population. Fitness traits were reduced by 5–74% in drought condition compared to well-watered condition. The most affected characters were total pod number per plant and total pod weight per plant. A total of 49 QTL, explaining between 6 and 38% of phenotypic variation for vegetative and reproductive fitness traits, were detected on all chromosomes except chromosome 6. A major QTL for flowering date (R 2 of 19 and 38%) that co-located with QTL for reproductive fitness traits were found on chromosome 7. In this study, no major QTL specific to drought-stressed or well-watered conditions were detected. We, thus, showed that QTL explaining fitness traits were numerous with small effects, in accordance with the genetic determinism of a complex trait.  相似文献   

3.
Drought is the major abiotic constraint contributing to yield reduction in common bean (Phaseolus vulgaris L.) worldwide. An increasing scarcity of water in the future will make improving adaptation to drought stress a major objective of most crop breeding efforts. Drought avoidance by increased extraction of soil moisture from greater depth under drought conditions is an adaptive mechanism of common bean. A recombinant inbred line population of DOR364?×?BAT477 was evaluated for rooting pattern traits in soil cylinder tubes under soil drying (progressive water stress) and non-stress (well-watered with 80% of field capacity) treatments in a greenhouse. One of the parents, BAT 477, is a deep-rooting genotype while the other parent, DOR 364, is a commercial cultivar in Central America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for ten rooting pattern traits as well as five shoot traits of 48-day-old plants. A mixed model quantitative trait locus (QTL) mapping analysis was carried out using a genetic map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. Genotype estimates were calculated from best design and spatial effects model for each trait. A total of 15 putative QTL were identified for seven rooting pattern traits and four shoot traits. The QTL detected were scattered over five of the 11 linkage groups. The QTL detected for all the root traits except total root length and fine root length were main effect QTL and did not interact with the level of water supply. The total root length and fine root length QTL with significant QTL?×?environment interaction only differed in magnitude of effect, and interaction was of a non-crossover type. Other QTL for total root length, fine roots, thick roots, root volume and root biomass were co-localized and also explained relatively more genetic variance. This suggests that the QTL affecting root traits in common beans are based on constitutive expression of genes and that drought avoidance based on deep rooting, longer root length, thicker roots, increasing root length distribution with depth, root volume and root biomass can be used in molecular breeding. The positive alleles for most of the QTL detected in this study were derived from the paternal parent BAT477. The results from the present analyses highlighted the feasibility of marker-aided selection as an alternative to conventional labor-intensive, phenotypic screening of drought avoidance root traits.  相似文献   

4.
A difficulty in identifying traits that help crop plants maintaintheir yield under droughted conditions is distinguishing betweenthose traits that contribute to yield stability under droughtand traits that do not affect yield. With the development ofmolecular markers for many crops it is now possible to identifymajor quantitative trait loci (QTL) regulating specific droughtresponses. By comparing the coincidence of such QTL for specifictraits it is possible to test much more precisely than beforewhether a particular constitutive or adaptive response to droughtstress is likely to be of significance in improving droughtresistance. We have used this approach to identify QTL for ABAcontent and other traits likely to be important in determiningdrought response in maize. Eighty-four RFLP markers were mapped in an F2 population of81 plants from a cross between parents, Polj17 (drought resistant)and F-2 (drought sensitive), that differ markedly in many constitutiveand adaptive responses to drought stress. In a soil glasshouseexperiment, from which water was withheld for 3 weeks afteranthesis, flowering time, stomatal conductance, tissue ABA contents,leaf water relations parameters and fluorescence characteristics,root pulling force, and nodal root number were measured. Theminimum number and location of genes having major effects onthe traits were determined and possible causal relationshipsamongst them tested. Comparing the coincidence of QTL for ABAcontent and stomatal conductance showed that xylem ABA contentwas more likely to have had a regulatory effect on the stomatalconductance of those plants than the whole leaf ABA content.However, both xylem and leaf ABA contents were significantlyassociated with root characteristics, suggesting that the rootingbehaviour (either constitutive or adaptive) was important inregulating stress responses, particularly in determining xylemABA contents. We also found that Fm (a measure of the activityof photosynthetic reaction centres) was positively associatedwith chlorophyll concentration per unit area. Different methodsfor comparing QTL are presented and discussed. Key words: Quantitative trait loci (QTL), ABA content, rooting behaviour, fluorescence characteristics, drought responses, maize  相似文献   

5.
Plant photosynthetic traits such as net photosynthetic rate (Pn), stomata conductance (gs), transpiration rate (Tr), and intercellular CO2 concentration (Ci), are known to relate to drought tolerance in plants, but the genetic basis of these traits remains largely uncharacterized because of the difficulty in phenotyping physiological traits in a large mapping population. In this study, a set of 55 overlapping introgression lines (ILs) in the Teqing (indica) background were used to genetically dissect several morph-physiological traits and their relationship with grain yield under water stress and non-stress conditions. These traits included specific leaf weight (SLW), chlorophyll content (CC), leaf stomata frequency (SF), Pn, gs, Tr, and Ci. A total of 40 QTLs affecting the measured traits were identified and mapped to 21 genomic regions in the rice genome. Clustered QTLs affecting Pn, gs, Tr, and Ci in the same genomic regions suggest common genetic bases for the physiological traits. Low or no phenotypic correlations between leaf morphological traits and photosynthetic traits and between morph-physiological traits and grain yield (GY) appeared to be due to inconsistence in QTL effect for clustered QTLs, unlinked QTLs affecting different traits, and to possible epistasis that could not be adequately addressed in this study. Our results indicate that improving drought tolerant (DT) of rice by selecting any single secondary traits is not expected to be effective and the identified QTLs for GY and related morph-physiological traits should be carefully confirmed before to be used for improving DT in rice by MAS.  相似文献   

6.
Drought tolerance is one of the most important but complex traits of crops. We looked for quantitative trait loci (QTLs) that affect drought tolerance in maize. Two maize inbreds and their advanced lines were evaluated for drought-related traits. A genetic linkage map developed using RFLP markers was used to identify QTLs associated with drought-related traits. Twenty-two QTLs were detected, with a minimum of one and a maximum of nine for drought-related traits. A single-QTL was detected for sugar concentration accounting for about 52.2% of the phenotypic variation on chromosome 6. A single-QTL was also identified for each of the traits root density, root dry weight, total biomass, relative water content, and leaf abscisic acid content, on chromosomes 1 and 7, contributing to 24, 0.2, 0.4, 7, and 19% of the phenotypic variance, respectively. Three QTLs were identified for grain yield on chromosomes 1, 5, and 9, explaining 75% of the observed phenotypic variability, whereas four QTLs were detected for osmotic potential on chromosomes 1, 3, and 9, together accounting for 50% of the phenotypic variance. Nine QTLs were detected for leaf surface area on chromosomes 3 and 9, with various degrees of phenotypic variance, ranging from 25.8 to 42.2%. Four major clusters of QTLs were identified on chromosomes 1, 3, 7, and 9. A QTL for yield on chromosome 1 was found co-locating with the QTLs for root traits, total biomass, and osmotic potential in a region of about 15 cM. A cluster of QTLs for leaf surface area were coincident with a QTL for osmotic potential on chromosome 3. The QTLs for leaf area also clustered on chromosome 9, whereas QTLs for leaf abscisic acid content and relative water content coincided on chromosome 7, 10 cM apart. Co-location of QTLs for different traits indicates potential pleiotropism or tight linkage, which may be useful for indirect selection in maize improvement for drought tolerance.  相似文献   

7.
A recombinant inbred population developed from a cross between high-yielding lowland rice (Oryza sativa L.) subspecies indica cv. IR64 and upland tropical rice subspecies japonica cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4 days. Water stress was imposed for a period of 15 days during pre-flowering by withholding irrigation at 65 days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the sd1 locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations.  相似文献   

8.
A restricted range in height and phenology of the elite Seri/Babax recombinant inbred line (RIL) population makes it ideal for physiological and genetic studies. Previous research has shown differential expression for yield under water deficit associated with canopy temperature (CT). In the current study, 167 RILs plus parents were phenotyped under drought (DRT), hot irrigated (HOT), and temperate irrigated (IRR) environments to identify the genomic regions associated with stress-adaptive traits. In total, 104 QTL were identified across a combination of 115 traits × 3 environments × 2 years, of which 14, 16, and 10 QTL were associated exclusively with DRT, HOT, and IRR, respectively. Six genomic regions were related to a large number of traits, namely 1B-a, 2B-a, 3B-b, 4A-a, 4A-b, and 5A-a. A yield QTL located on 4A-a explained 27 and 17% of variation under drought and heat stress, respectively. At the same location, a QTL explained 28% of the variation in CT under heat, while 14% of CT variation under drought was explained by a QTL on 3B-b. The T1BL.1RS (rye) translocation donated by the Seri parent was associated with decreased yield in this population. There was no co-location of consistent yield and phenology or height-related QTL, highlighting the utility of using a population with a restricted range in anthesis to facilitate QTL studies. Common QTL for drought and heat stress traits were identified on 1B-a, 2B-a, 3B-b, 4A-a, 4B-b, and 7A-a confirming their generic value across stresses. Yield QTL were shown to be associated with components of other traits, supporting the prospects for dissecting crop performance into its physiological and genetic components in order to facilitate a more strategic approach to breeding.  相似文献   

9.
Identification of QTL for increased fibrous roots in soybean   总被引:2,自引:0,他引:2  
Drought stress adversely affects soybean at various developmental stages, which collectively results in yield reduction. Unpredictable rainfall has been reported to contribute about 36% to variation of yield difference between the rain-fed and irrigated fields. Among the drought resistance mechanisms, drought avoidance in genotypes with fibrous roots was recognized to be associated with drought resistance in soybean. Plant introduction PI416937 was shown to possess fibrous roots and has been used as a parent in breeding programs to improve soybean productivity. Little information is available on relative contribution and chromosomal location of quantitative trait loci (QTL) conditioning fibrous roots in soybean. To identify the genomic locations and genetic bases of this trait, a recombinant inbred line population was derived from a cross between PI416937 and ‘Benning’. To detect associated QTLs, phenotypic data were collected and analyzed for 2 years under rain-fed field conditions. The selective genotyping approach was used to reduce the costs and work associated with conducting the QTL analysis. A total of five QTLs were identified on chromosomes Gm01 (Satt383), Gm03 (Satt339), Gm04 (Sct_191), Gm08 (Satt429), and Gm20 (Sat_299), and together explained 51% of the variation in root score. Detected QTLs were co-localized with QTLs related to root morphology, suggesting that fibrous roots QTL may be associated with other morpho-physiological traits and seed yield in soybean. Genetic dissection of the fibrous roots trait at the individual marker loci will allow for marker-assisted selection to develop soybean genotypes with enhanced levels of fibrous roots.  相似文献   

10.
Root system is a vital part of plants for absorbing soil moisture and nutrients and it influences the drought tolerance. Identification of the genomic regions harbouring quantitative trait loci (QTLs) for root and yield traits, and the linked markers can facilitate sorghum improvement through marker-assisted selection (MAS) besides the deeper understanding of the plant response to drought stress. A population of 184 recombinant inbred lines (RILs), derived from E36-1 × SPV570, along with parents were phenotyped for component traits of yield in field and root traits in an above ground rhizotron. High estimates of heritability and genetic advance for all the root traits and for most of the yield traits, presents high scope for improvement of these traits by simple selection. A linkage map constructed with 104 marker loci comprising 50 EST-SSRs, 34 non-genic nuclear SSRs and 20 SNPs, and QTL analysis was performed using composite interval mapping (CIM) approach. A total of eight and 20 QTLs were mapped for root and yield related traits respectively. The QTLs for root volume, root fresh weight and root dry weight were found co-localized on SBI-04, supported by a positive correlation among these traits. Hence, these traits can be improved using the same linked markers. The lack of overlap between the QTLs of component traits of root and yield suggested that these two sets of parameters are independent in their influence and the possibility of combining these two traits might enhance productivity of sorghum under receding moisture condition.  相似文献   

11.
Drought is a major constraint to rice (Oryza sativa) yield and its stability in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and development of more drought tolerant cultivars. Quantitative trait loci (QTL) for grain yield and its components and other agronomic traits were identified using a subset of 154 doubled haploid lines derived from a cross between two rice cultivars, CT9993-510 to 1-M and IR62266-42 to 6-2. Drought stress treatments were managed by use of a line source sprinkler irrigation system, which provided a linearly decreasing level of irrigation coinciding with the sensitive reproductive growth stages. The research was conducted at the Ubon Rice Research Center, Ubon, Thailand. A total of 77 QTL were identified for grain yield and its components under varying levels of water stress. Out of the total of 77 QTL, the number of QTL per trait were: 7-grain yield (GY); 8-biological yield (BY); 6-harvest index (HI); 5-d to flowering after initiation of irrigation gradient (DFAIG); 10-total spikelet number (TSN); 7-percent spikelet sterility (PSS); 23-panicle number (PN); and 11-plant height (PH). The phenotypic variation explained by individual QTL ranged from 7.5% to 55.7%. Under well-watered conditions, we observed a high genetic association for BY, HI, DFAIG, PSS, TSN, PH, and GY. However, only BY and HI were found to be significantly associated with GY under drought treatments. QTL flanked by markers RG104 to RM231, EMP2_2 to RM127, and G2132 to RZ598 on chromosomes 3, 4, and 8 were associated with GY, HI, DFAIG, BY, PSS, and PN under drought treatments. The aggregate effects of these QTL on chromosomes 3, 4, and 8 resulted in higher grain yield. These QTL will be useful for rainfed rice improvement, and will also contribute to our understanding of the genetic control of GY under drought conditions at the sensitive reproductive stage. Close linkage or pleiotropy may be responsible for the coincidence of QTL detected in this experiment. Digenic interactions between QTL main effects for GY, BY, HI, and PSS were observed under irrigation treatments. Most (but not all) DH lines have the same response in measure of productivity when the intensity of water deficit was increased, but no QTL by irrigation treatment interaction was detected. The identification of genomic regions associated with GY and its components under drought stress will be useful for marker-based approaches to improve GY and its stability for farmers in drought-prone rice environments.  相似文献   

12.
The ability to cope with water limitation influences plant distributions, and several plant traits have been interpreted as adaptations to drought stress. In Scandinavia, the perennial herb Arabidopsis lyrata occurs in open habitats that differ widely in climate and water availability in summer, suggesting differential selection on drought-related traits. We conducted two greenhouse experiments to examine differentiation in drought response traits among six Scandinavian populations, and to determine whether leaf trichomes confer protection against drought. We quantified tolerance to drought as fitness (survival and biomass of survivors) when exposed to drought relative to fitness under non-drought conditions. Two Swedish populations from shores along the Bothnian Bay had higher tolerance to drought than four riverbed populations from Norway. Under conditions of drought, the shore populations experienced less leaf damage compared to the riverbed populations, and their survival and biomass were less reduced relative to non-drought conditions. Across populations, tolerance to drought was positively related to leaf mass per area and negatively related to flowering propensity and proportion roots, but not related to plant size at the initiation of the drought treatment. In populations polymorphic for trichome production, trichome-producing plants were more tolerant to drought than glabrous plants. The results suggest that both leaf morphology and life-history traits contribute to differential drought response in natural populations of A. lyrata, and that this system offers excellent opportunities for examining the adaptive value and genetic basis of drought-related traits.  相似文献   

13.
A large set of 254 introgression lines in an elite indica genetic background were evaluated for grain yield (GY) and related traits under the irrigated (control) and drought (stress) conditions in two consecutive years for genetic dissection of adaptive strategies of rice to water stress. A total of 36 quantitative trait loci (QTLs) affecting heading date (HD), plant height (PH), GY and yield components were identified and most QTLs showed pronounced differential expression either qualitatively or quantitatively in response to drought. These QTLs could be grouped into three major types based on their behaviors under control and stress conditions. Type I included 12 QTLs that expressed under both the stress and non-stress conditions. Type II comprised 17 QTLs that expressed under irrigation but not under stress. Type III included seven QTLs that were apparently induced by stress. The observation that the Lemont (japonica) alleles at all HD QTLs except QHd5 resulted in early heading under stress appeared to be responsible for the putative adaptation of Lemont to drought by escaping, whereas the Teqing (indica) alleles at most PH/GY QTLs were consistently associated with increased yield potential and trait stability and thus contributed to DT. Our result that most DT QTLs were non-allelic with QTLs for drought escaping suggests that the two adaptive strategies in the parental lines are under possible negative regulation of two largely non-overlapping genetic systems.  相似文献   

14.
Enhancing drought tolerance in C(4) crops   总被引:1,自引:0,他引:1  
Adaptation to abiotic stresses is a quantitative trait controlled by many different genes. Enhancing the tolerance of crop plants to abiotic stresses such as drought has therefore proved to be somewhat elusive in terms of plant breeding. While many C(4) species have significant agronomic importance, most of the research effort on improving drought tolerance has focused on maize. Ideally, drought tolerance has to be achieved without penalties in yield potential. Possibilities for success in this regard are highlighted by studies on maize hybrids performed over the last 70 years that have demonstrated that yield potential and enhanced stress tolerance are associated traits. However, while our understanding of the molecular mechanisms that enable plants to tolerate drought has increased considerably in recent years, there have been relatively few applications of DNA marker technologies in practical C(4) breeding programmes for improved stress tolerance. Moreover, until recently, targeted approaches to drought tolerance have concentrated largely on shoot parameters, particularly those associated with photosynthesis and stay green phenotypes, rather than on root traits such as soil moisture capture for transpiration, root architecture, and improvement of effective use of water. These root traits are now increasingly considered as important targets for yield improvement in C(4) plants under drought stress. Similarly, the molecular mechanisms underpinning heterosis have considerable potential for exploitation in enhancing drought stress tolerance. While current evidence points to the crucial importance of root traits in drought tolerance in C(4) plants, shoot traits may also be important in maintaining high yields during drought.  相似文献   

15.
The identification of morpho-physiological traits related to drought tolerance and high yield potential is a challenge when selecting sugar beet genotypes with greater tolerance to water stress. In this paper, root morphological parameters, antioxidant systems, leaf relative water content (RWC) and H+-ATPase activity as key morpho-physiological traits involved in drought tolerance/susceptibility of sugar beet were studied. Genotypes showing a different drought tolerance index (DTI) but a similar yield potential, under moderate (?0.6 Mpa) and severe (?1.2 MPa) water stress, were selected and their morpho-physiological traits were investigated. The results showed a wide genetic variation in morpho-physiological parameters which demonstrated the different adaptive strategies under moderate and severe drought conditions in sugar beet. In particular, an efficient antioxidant system and redox signalling made some sugar beet genotypes more tolerant to drought stress. The alternative strategy of other genotypes was the reduction of root tissue density, which produced a less dense root system improving the axial hydraulic conductivity. These results could be considered as interesting challenge for a better understanding of the drought tolerance mechanisms in sugar beet.  相似文献   

16.
The usual method to locate and compare loci regulating quantitative traits (QTLs) requires a segregating population of plants with each one genotyped with molecular markers. However, plants from such segregating populations can also be grouped according to phenotypic expression of a trait and tested for differences in allele frequency between the population bulks: bulk segregant analysis (BSA). The same probes used for making a genetic map (e.g. isozyme, RFLP, RAPD, etc) can be used for BSA. A molecular marker showing polymorphism between the parents of the population and which is closely-linked to a major QTL regulating a particular trait will mainly co-segregate with that QTL, i.e. segregate according to the phenotype if the QTL has a large effect. Thus, if plants are grouped according to expression of the trait and extreme groups tested with that polymorphic marker, the frequency of the two marker alleles present within each of the two bulks should deviate significantly from the ratio of 1 : 1 expected for most populations. As chromosomal locations of many molecular markers have now been determined in many species, the map location of closely-linked QTLs can therefore be deduced without having to genotype every individual in segregating populations. This has been used successfully with composite populations of maize to locate QTLs associated with yield under severe drought. An inbred line derived from one of the populations selected for higher drought yield has been crossed with a drought-susceptible inbred line to produce a mapping population for QTL analysis of physiological and developmental traits likely to regulate yield under drought. Future work to identify traits having QTLs with flanking markers showing significant allele frequency differences in the GSA studies will indicate those traits likely to be important in determining yield under drought.Key words: Bulk segregant analysis (BSA), drought resistance, genetic maps, maize, molecular markers, Zea mays (L.).   相似文献   

17.
Mapping QTLs associated with drought avoidance in upland rice   总被引:20,自引:0,他引:20  
The identification of molecular markers linked to genes controlling drought resistance factors in rice is a necessary step to improve breeding efficiency for this complex trait. QTLs controlling drought avoidance mechanisms were analyzed in a doubled-haploid population of rice. Three trials with different drought stress intensities were carried out in two sites. Leaf rolling, leaf drying, relative water content of leaves and relative growth rate under water stress were measured on 105 doubled haploid lines in two trials and on a sub-sample of 85 lines in the third one. Using composite interval mapping with a LOD threshold of 2.5, the total number of QTLs detected in all trials combined was 11 for leaf rolling, 10 for leaf drying, 11 for relative water content and 10 for relative growth rate under stress. Some of these QTLs were common across traits. Among the eleven possible QTLs for leaf rolling, three QTLs (on chromosomes 1, 5 and 9) were common across the three trials and four additional QTLs (on chromosomes 3, 4 and 9) were common across two trials. One QTL on chromosome 4 for leaf drying and one QTL on chromosome 1 for relative water content were common across two trials while no common QTL was identified for relative growth rate under stress. Some of the QTLs detected for leaf rolling, leaf drying and relative water content mapped in the same places as QTLs controlling root morphology, which were identified in a previous study involving the same population. Some QTL identified here were also located similarly with other QTLs for leaf rolling as reported from other populations. This study may help to chose the best segments for introgression into rice varieties and improvement of their drought resistance.  相似文献   

18.
19.
Drought stress is one of the major abiotic stresses affecting lint yield and fibre quality in cotton. With increase in population, degrading natural resources and frequent drought occurrences, development of high yielding, drought tolerant cotton cultivars is critical for sustainable cotton production across countries. Six Gossypium hirsutum genotypes identified for drought tolerance, wider adaptability and better fibre quality traits were characterized for various morpho-physiological and biochemical characters and their molecular basis was investigated under drought stress. Under drought conditions, genotypes revealed statistically significant differences for all the morpho-physiological and biochemical traits. The interaction (genotype × treatment) effects were highly significant for root length, excised leaf water loss and cell membrane thermostability indicating differential interaction of genotypes under control and stress conditions. Correlation studies revealed that under drought stress, relative water content had significant positive correlation with root length and root-to-shoot ratio while it had significant negative correlation with excised leaf water loss, epicuticular wax, proline, potassium and total soluble sugar content. Analysis of expression of fourteen drought stress related genes under water stress indicated that both ABA dependent and ABA independent mechanisms of drought tolerance might be operating differentially in the studied genotypes. IC325280 and LRA5166 exhibited ABA mediated expression of stress responsive genes and traits. Molecular basis of drought tolerance in IC357406, Suraj, IC259637 and CNH 28I genotypes could be attributed to ABA independent pathway. Based on physiological phenotyping, the genotypes IC325280 and IC357406 were identified to possess better root traits and LRA5166 was found to have enhanced cellular level tolerance. Variety Suraj exhibited good osmotic adjustment and better root traits to withstand water stress. The identified drought component trait(s) in specific genotypes would pave way for their pyramiding through marker assisted cotton breeding.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00890-3) contains supplementary material, which is available to authorized users.  相似文献   

20.
Potato is the third most important staple food crop in terms of consumption, yet it is relatively susceptible to yield loss because of drought. As a first step towards improving drought tolerance in this crop, we set out to identify the genetic basis for drought tolerance in a diploid potato mapping population. Experiments were carried out under greenhouse conditions in two successive years by recording four physiological, seven growth and three yield parameters under stress and recovery treatments. Genotypes showed significant variation for drought and recovery responses. The traits measured had low to moderately high heritabilities (ranging from 22 to 74?%). A total of 47 quantitative trait loci (QTL) were identified, of which 28 were drought-specific, 17 under recovery treatment and two under well-watered conditions. The majority of these growth and yield QTL co-localized with a QTL for maturity on chromosome 5. Four QTL for ??13C, three for chlorophyll content and one for chlorophyll fluorescence (F v/F m) were found to co-localize with yield and other growth trait QTL identified on other chromosomes. Several multi-year and multi-treatment QTL were detected and QTL?×?environment interaction was found for ??13C. To our knowledge, this is the first comprehensive QTL study on water deficit and recovery potential in potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号