共查询到20条相似文献,搜索用时 15 毫秒
1.
Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. 总被引:6,自引:0,他引:6
Shu-Cheng Chen Michael W Leach Yuetian Chen Xiao-Yan Cai Lee Sullivan Maria Wiekowski B J Dovey-Hartman Albert Zlotnik Sergio A Lira 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(3):1009-1017
To study the biological role of the chemokine ligands CCL19 and CCL21, we generated transgenic mice expressing either gene in oligodendrocytes of the CNS. While all transgenic mice expressing CCL19 in the CNS developed normally, most (18 of 26) of the CCL21 founder mice developed a neurological disease that was characterized by loss of landing reflex, tremor, and ataxia. These neurological signs were observed as early as postnatal day 9 and were associated with weight loss and death during the first 4 wk of life. Microscopic examination of the brain and spinal cord of CCL21 transgenic mice revealed scattered leukocytic infiltrates that consisted primarily of neutrophils and eosinophils. Additional findings included hypomyelination, spongiform myelinopathy with evidence of myelin breakdown, and reactive gliosis. Thus, ectopic expression of the CC chemokine CCL21, but not CCL19, induced a significant inflammatory response in the CNS. However, neither chemokine was sufficient to recruit lymphocytes into the CNS. These observations are in striking contrast to the reported activities of these molecules in vitro and may indicate specific requirements for their biological activity in vivo. 相似文献
2.
Saederup N Cardona AE Croft K Mizutani M Cotleur AC Tsou CL Ransohoff RM Charo IF 《PloS one》2010,5(10):e13693
Background
Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.Methodology/Principal Findings
We created CCR2-red fluorescent protein (RFP) knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6Chi/CCR2hi monocytes. Surprisingly, neutrophils, not Ly6Clo monocytes, largely replaced Ly6Chi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.Conclusion/Significance
These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations. 相似文献3.
4.
IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system 总被引:1,自引:0,他引:1
Millward JM Caruso M Campbell IL Gauldie J Owens T 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(12):8175-8182
Inflammation of the CNS, which occurs during multiple sclerosis and experimental autoimmune encephalomyelitis, is characterized by increased levels of IFN-gamma, a cytokine not normally expressed in the CNS. To investigate the role of IFN-gamma in CNS, we used intrathecal injection of a replication-defective adenovirus encoding murine IFN-gamma (AdIFNgamma) to IFN-gamma-deficient (GKO) mice. This method resulted in stable, long-lived expression of IFN-gamma that could be detected in cerebrospinal fluid using ELISA and Luminex bead immunoassay. IFN-gamma induced expression in the CNS of message and protein for the chemokines CXCL10 and CCL5, to levels comparable to those seen during experimental autoimmune encephalomyelitis. Other chemokines (CXCL2, CCL2, CCL3) were not induced. Mice lacking the IFN-gammaR showed no response, and a control viral vector did not induce chemokine expression. Chemokine expression was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T lymphocytes detected in the CNS by flow cytometry. This increase in blood-derived immune cells in the CNS did not occur with pertussis toxin alone, and did not manifest as histologically detectable inflammatory pathology. These results show that IFN-gamma induces a characteristic glial chemokine response that by itself is insufficient to promote inflammation, and that IFN-gamma-induced CNS chemoattractant signals can synergize with a peripheral infectious stimulus to drive T cell entry into the CNS. 相似文献
5.
The relationship between N-acetylserotonin (NAS) in the central nervous system (CNS) and responses to pain was investigated. Using the rat tail-flick model, we initially replicated the work of others showing that intraventricular (IVC) injection of a dipeptide structurally similar to both NAS and serotonin was capable of inducing analgesia in the rat. We then showed that IVC-NAS, but not serotonin elicited analgesia in much the same manner as the dipeptide. This effect proved to be very specific as it required the presence of both an acetyl group on the terminal side chain amine as well as a hydroxyl group on the C-5 position of the indole ring. Substitution of the C-5 hydroxyl by a methoxyl group (melatonin) abolished the analgesic effect. Similarly, removing the N-acetyl substitution (serotonin) also eliminated the analgesia. IVC injection of highly specific antiserum to NAS induced hyperalgesia. Furthermore, an interaction was found between NAS and opiate systems. We demonstrated that while naloxone, the opiate antagonist, has no hyperalgesic properties of itself, it did counteract the analgesia induced by NAS. Similarly, NAS antiserum reversed the analgesia induced by the opiate morphine. This work provides evidence that NAS is an endogenously active substance within the CNS pain network. 相似文献
6.
Weber MS Benkhoucha M Lehmann-Horn K Hertzenberg D Sellner J Santiago-Raber ML Chofflon M Hemmer B Zamvil SS Lalive PH 《PloS one》2010,5(12):e16009
Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS). Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE) can be enhanced by concomitant administration of pertussis toxin (PTx), the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS). In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg). Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4(+)CD25(+)FoxP3(+) Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation. 相似文献
7.
In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. 相似文献
8.
9.
Tomoyuki Kuwaki Naohiro Koshiya Naohito Terui Mamoru Kumada 《Neurochemistry international》1991,18(4):519-524
In urethane-anesthetized, vagotomized and immobilized rats under artificial ventilation, an intracisternal injection of 0.1 pmol of endothelin-1 resulted in immediate increases, lasting for 3–15 min, in arterial pressure, heart rate and renal sympathetic nerve activity. Phrenic nerve activity and the rate of its burst activity (burst rate) also increased initially but subsequently decreased for 5–20 min. At doses of 1 or 10 pmol, the initial increases (phase I) were followed by a period of decreases in all variables, that lasted for 20–80 min, below the pre-injection level (phase II). Phrenic nerve activity often disappeared completely. All the variables usually returned to, or often exceeded, pre-injection levels (phase III). However, arterial pressure sometimes remained below control for at least 2 h. Topical application of endothelin-1 to the ventral surface of the medulla produced the same pattern of changes as with intracisternal injection. This particular response pattern was not generated by local administration to any other brain sites examined.
In conclusion, intracisternally administered endothelin-1 modulates cardiorespiratory control by the central nervous system. The effect on the central respiratory control was especially powerful. The ventral surface of the medulla appears to play a crucial role in this modulation. 相似文献
10.
Pertussis toxin (PT), the major toxin produced by Bordetella pertussis, has been reported both to enhance and to suppress immune responsiveness. These findings suggested that PT contributes to the virulence of B. pertussis through mechanisms involving immune regulation. We report that PT suppressed both the primary and the secondary cytotoxic T-lymphocyte (CTL) responses of mouse spleen cells cultured against two different allogeneic stimulator spleen cells in vitro. This suppression was dependent on the dose of PT used. PT must be present during the initial stages (within the first 24 hr) of CTL generation. Soluble factor(s) obtained from spleen cells preexposed to PT did not suppress the CTL response. Suppression of the CTL response observed was not due to depletion of the antigen by PT. The cytotoxic activity of CTL clones could not be suppressed by PT. The analysis of responder spleen cells, fractionated by anti-immunoglobulin panning techniques, provided evidence that L3T4-, Lyt 2+ cells mediate the PT-induced immunosuppression. We propose that suppression of the CTL response by PT is generated through the activation of L3T4-, Lyt 2+ suppressor T lymphocytes. 相似文献
11.
12.
先天性CMV感染致中枢神经系统畸形发育机制 总被引:5,自引:0,他引:5
胎儿中枢神经系统(central nervous system,CNS)是人类巨细胞病毒(human cytomegalovirus,HCMV)先天性感染的主要靶器官。胚胎期CMV感染常常导致严重CNS畸形的发生,其前提条件是CNS中的神经前体(干)细胞、神经元及神经胶质细胞对CMV普遍易感。发育期CNS感染CMV具有以下特点:⑴神经系统细胞对CMV的容纳性在CNS的不同发育阶段有所不同;⑵受累的细胞数随着发育的进展而增多;⑶CNS不同部位的细胞对CMV的敏感性存在明显的差异;⑷感染发生时细胞所处细胞周期的时相也与感染严重程度密切相关。CMV感染能诱导宿主细胞特异性的染色体折断,影响Homeobox基因(胚胎发育的主控基因)的表达,进而阻断细胞周期(G1期滞留)、诱导细胞凋亡,导致CNS细胞数量减少与迁徙异常,最终导致C N S发育畸形。 相似文献
13.
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. 相似文献
14.
Ji N Rao N Guentzel NM Arulanandam BP Forsthuber TG 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(5):2750-2756
Ab-mediated blockade of the adhesion molecule VLA-4 has been shown to ameliorate disease in human multiple sclerosis patients and experimental autoimmune encephalomyelitis (EAE) animal models. We wanted to determine whether anti-VLA-4 Ab treatment affected the function and persistence of autoreactive T cells in mice with EAE. Unexpectedly, we observed a high level of mortality in anti-VLA-4 mAb (PS/2)-treated mice with actively induced EAE despite decreased disease severity. Investigation of the underlying mechanism showed that injection of PS/2 mAb in combination with pertussis toxin resulted in anaphylaxis and mortality. Furthermore, the data showed that CD4(+) T cells were required for this effect and suggested a role for IL-1β and TNF-α in the underlying pathology. The results reveal a previously not appreciated deleterious effect of anti-VLA-4 Ab treatment in combination with exposure to pertussis toxin. 相似文献
15.
Haroon F Drögemüller K Händel U Brunn A Reinhold D Nishanth G Mueller W Trautwein C Ernst M Deckert M Schlüter D 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(11):6521-6531
Astrocytes are activated in experimental autoimmune encephalomyelitis (EAE) and have been suggested to either aggravate or ameliorate EAE. However, the mechanisms leading to an adverse or protective effect of astrocytes on the course of EAE are incompletely understood. To gain insight into the astrocyte-specific function of gp130 in EAE, we immunized mice lacking cell surface expression of gp130, the signal-transducing receptor for cytokines of the IL-6 family, with myelin oligodendrocyte glycoprotein(35-55) peptide. These glial fibrillary acid protein (GFAP)-Cre gp130(fl/fl) mice developed clinically a significantly more severe EAE than control mice and succumbed to chronic EAE. Loss of astrocytic gp130 expression resulted in apoptosis of astrocytes in inflammatory lesions of GFAP-Cre gp130(fl/fl) mice, whereas gp130(fl/fl) control mice developed astrogliosis. Astrocyte loss of GFAP-Cre gp130(fl/fl) mice was paralleled by significantly larger areas of demyelination and significantly increased numbers of CD4 T cells in the CNS. Additionally, loss of astrocytes in GFAP-Cre gp130(fl/fl) mice resulted in a reduction of CNS regulatory Foxp3(+) CD4 T cells and an increase of IL-17-, IFN-γ-, and TNF-producing CD4 as well as IFN-γ- and TNF-producing CD8 T cells, illustrating that astrocytes regulate the phenotypic composition of T cells. An analysis of mice deficient in either astrocytic gp130- Src homology region 2 domain-containing phosphatase 2/Ras/ERK or gp130-STAT1/3 signaling revealed that prevention of astrocyte apoptosis, restriction of demyelination, and T cell infiltration were dependent on the astrocytic gp130-Src homology region 2 domain-containing phosphatase 2/Ras/ERK, but not on the gp130-STAT1/3 pathway, further demonstrating that gp130-dependent astrocyte activation is crucial to ameliorate EAE. 相似文献
16.
M S Abdullakhozhdaeva S R Razykov 《Biulleten' eksperimental'no? biologii i meditsiny》1986,102(11):600-602
The effect of the permanent magnetic field (PMF) on the brain cortex of rats has been assessed. The study was performed on neurons, astrocytes and synapses of post- and precentral brain cortical zones. CNS sensitivity to PMF was determined. When the animals were exposed to PMF once or 15 times the changes in microstructures were of compensatory-adaptive character, indicative of the enhancement in their functional activity. When the animals were exposed to PMF 30 times, dystrophic changes underlying the impairment of CNS functional activity developed, 10 days after the exposure to PMF was discontinued regenerative intracellular processes were revealed. 相似文献
17.
Growth is confined within a size that is normal for each species, revealing that somehow an organism 'knows' when this size has been reached. Within a species, growth is also variable, but despite this, proportion and structure are maintained. Perhaps, the key element in the control of size is the control of cell number. Here we review current knowledge on the mechanisms controlling cell number in the nervous system of vertebrates and flies. During growth, clonal expansion is confined, the number of progeny cells is balanced through the control of cell survival and cell proliferation and excess cells are eliminated by apoptosis. Simultaneously, organ architecture emerges and as neurons become active they also influence growth. The interactive control of cell number provides developmental plasticity to nervous system development. Many findings are common between flies and mice, other aspects have been studied more in one organism than the other and there are also aspects that are unique to either organism. Although cell number control has long been studied in the nervous system, analogous mechanisms are likely to operate during the growth of other organs and organisms. 相似文献
18.
19.
20.
Preller V Gerber A Wrenger S Togni M Marguet D Tadje J Lendeckel U Röcken C Faust J Neubert K Schraven B Martin R Ansorge S Brocke S Reinhold D 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(7):4632-4640
The T cell marker CD26/dipeptidyl peptidase (DP) IV is associated with an effector phenotype and markedly elevated in the human CNS disorder multiple sclerosis. However, little is known about the in vivo role of CD26/DP IV in health and disease, and the underlying mechanism of its function in CNS inflammation. To directly address the role of CD26/DP IV in vivo, we examined Th1 immune responses and susceptibility to experimental autoimmune encephalomyelitis in CD26(-/-) mice. We show that gene deletion of CD26 in mice leads to deregulation of Th1 immune responses. Although production of IFN-gamma and TNF-alpha by pathogenic T cells in response to myelin Ag was enhanced in CD26(-/-) mice, production of the immunosuppressive cytokine TGF-beta1 was diminished in vivo and in vitro. In contrast to the reduction in TGF-beta1 production, responsiveness to external TGF-beta1 was normal in T cells from CD26(-/-) mice, excluding alterations in TGF-beta1 sensitivity as a mechanism causing the loss of immune regulation. Natural ligands of CD26/DP IV induced TGF-beta1 production in T cells from wild-type mice. However, natural ligands of CD26/DP IV failed to elicit TGF-beta1 production in T cells from CD26(-/-) mice. The striking functional deregulation of Th1 immunity was also seen in vivo. Thus, clinical experimental autoimmune encephalomyelitis scores were significantly increased in CD26(-/-) mice immunized with peptide from myelin oligodendrocyte glycoprotein. These results identify CD26/DP IV as a nonredundant inhibitory receptor controlling T cell activation and Th1-mediated autoimmunity, and may have important therapeutic implications for the treatment of autoimmune CNS disease. 相似文献