共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival 总被引:13,自引:0,他引:13
Wang X McCullough KD Franke TF Holbrook NJ 《The Journal of biological chemistry》2000,275(19):14624-14631
The serine/threonine kinase Akt (also known as protein kinase B) is activated in response to various stimuli by a mechanism involving phosphoinositide 3-kinase (PI3-K). Akt provides a survival signal that protects cells from apoptosis induced by growth factor withdrawal, but its function in other forms of stress is less clear. Here we investigated the role of PI3-K/Akt during the cellular response to oxidant injury. H(2)O(2) treatment elevated Akt activity in multiple cell types in a time- (5-30 min) and dose (400 microM-2 mm)-dependent manner. Expression of a dominant negative mutant of p85 (regulatory component of PI3-K) and treatment with inhibitors of PI3-K (wortmannin and LY294002) prevented H(2)O(2)-induced Akt activation. Akt activation by H(2)O(2) also depended on epidermal growth factor receptor (EGFR) signaling; H(2)O(2) treatment led to EGFR phosphorylation, and inhibition of EGFR activation prevented Akt activation by H(2)O(2). As H(2)O(2) causes apoptosis of HeLa cells, we investigated whether alterations of PI3-K/Akt signaling would affect this response. Wortmannin and LY294002 treatment significantly enhanced H(2)O(2)-induced apoptosis, whereas expression of exogenous myristoylated Akt (an activated form) inhibited cell death. Constitutive expression of v-Akt likewise enhanced survival of H(2)O(2)-treated NIH3T3 cells. These results suggest that H(2)O(2) activates Akt via an EGFR/PI3-K-dependent pathway and that elevated Akt activity confers protection against oxidative stress-induced apoptosis. 相似文献
2.
Khan EM Heidinger JM Levy M Lisanti MP Ravid T Goldkorn T 《The Journal of biological chemistry》2006,281(20):14486-14493
The epidermal growth factor (EGF) receptor (EGFR) has been found to be overexpressed in several types of cancer cells, and the regulation of its oncogenic potential has been widely studied. The paradigm for EGFR down-regulation involves the trafficking of activated receptor molecules from the plasma membrane, through clathrin-coated pits, and into the cell for lysosomal degradation. We have previously shown that oxidative stress generated by H2O2 results in aberrant phosphorylation of the EGFR. This leads to the loss of c-Cbl-mediated ubiquitination of the EGFR and, consequently, prevents its degradation. However, we have found that c-Cbl-mediated ubiquitination is required solely for degradation but not for internalization of the EGFR under oxidative stress. To further examine the fate of the EGFR under oxidative stress, we used confocal analysis to show that the receptor not only remains co-localized with caveolin-1 at the plasma membrane, but at longer time points, is also sorted to a perinuclear compartment via a clathrin-independent, caveolae-mediated pathway. Our findings indicate that although the EGFR associates with caveolin-1 constitutively, caveolin-1 is hyperphosphorylated only under oxidative stress, which is essential in transporting the EGFR to a perinuclear location, where it is not degraded and remains active. Thus, oxidative stress may have a role in tumorigenesis by not only activating the EGFR but also by promoting prolonged activation of the receptor both at the plasma membrane and within the cell. 相似文献
3.
Lennartsson J Wardega P Engström U Hellman U Heldin CH 《The Journal of biological chemistry》2006,281(51):39152-39158
Alix (ALG-2-interacting protein X) is an adaptor protein involved in down-regulation and sorting of cell surface receptors through the endosomal compartments toward the lysosome. In this study, we show that Alix interacts with the C-terminal region of the platelet-derived growth factor (PDGF) beta-receptor (PDGFRbeta) and becomes transiently tyrosine-phosphorylated in response to PDGF-BB stimulation. Increased expression levels of Alix resulted in a reduced rate of PDGFRbeta removal from the cell surface following receptor activation, and this was associated with decreased receptor degradation. Furthermore, Alix was found to co-immunoprecipitate with the ubiquitin ligase c-Cbl, and elevated Alix levels increased the interaction between c-Cbl and PDGFRbeta. Interestingly, Alix interacted constitutively with both c-Cbl and PDGFRbeta. Moreover, c-Cbl was found to be hyperphosphorylated in cells engineered to overexpress Alix compared with control cells. The increased c-Cbl phosphorylation correlated with enhanced proteasomal degradation of c-Cbl, which in turn correlated with a decreased ubiquitination of PDGFRbeta. Our data suggest that Alix inhibits down-regulation of PDGFRbeta by modulating the interaction between c-Cbl and the receptor, thereby affecting the ubiquitination of the receptor. 相似文献
4.
Jorissen RN Walker F Pouliot N Garrett TP Ward CW Burgess AW 《Experimental cell research》2003,284(1):31-53
The epidermal growth factor (EGF) receptor (EGFR) is one of four homologous transmembrane proteins that mediate the actions of a family of growth factors including EGF, transforming growth factor-alpha, and the neuregulins. We review the structure and function of the EGFR, from ligand binding to the initiation of intracellular signalling pathways that lead to changes in the biochemical state of the cell. The recent crystal structures of different domains from several members of the EGFR family have challenged our concepts of these processes. 相似文献
5.
D G Kay W H Lai M Uchihashi M N Khan B I Posner J J Bergeron 《The Journal of biological chemistry》1986,261(18):8473-8480
The rat liver epidermal growth factor (EGF) receptor was assessed for EGF-dependent autophosphorylation as well as phosphorylation of a defined exogenous substrate in purified plasmalemma and Golgiendosome fractions isolated from rat liver homogenates. While EGF-dependent kinase activity was readily detected in plasmalemma the corresponding activity in Golgi-endosome fractions required detergent. Consequent to the systemic injection of EGF in vivo, the majority (approximately 60%) of receptor as evaluated by 125I-EGF binding was rapidly lost (T 1/2 approximately 8 min) from the plasmalemma and correspondingly accumulated in the Golgi-endosome fraction in a dose-dependent manner. Electron microscope radioautography of 125I-EGF uptake into Golgi-endosome fractions identified internalization into lipoprotein-filled vesicles of heterogenous size and shape but not into stacked saccules of the Golgi apparatus. Evaluation of receptor kinase activity in plasmalemma fractions isolated at various times after EGF injection in vivo showed more rapid loss of EGF-dependent autophosphorylation activity (T 1/2 approximately 10 s) than of receptor content (T 1/2 approximately 8 min). In contrast to the EGF receptor kinase of the plasmalemma fraction, kinase activity accumulating in endosomes was activated, i.e. maximally stimulated, in the absence of EGF or Triton X-100 in vitro. Furthermore, following the peak time of accumulation of EGF receptor kinase in endosomes (5-15 min) EGF-dependent autophosphorylation activity and EGF receptor content were lost more slowly (T 1/2 approximately 27 and 87 min for the loss of autophosphorylation activity and receptor content, respectively). The rapidity of translocation of activated EGF receptor into endosomes (30 s) and the dose response to low levels (1 microgram) of EGF injected are consistent with a physiological role for internalized EGF receptor kinase activity. 相似文献
6.
Epidermal growth factor receptor signaling 总被引:5,自引:0,他引:5
7.
Three different receptor tyrosine kinases, epidermal growth factor (EGF), c-erbB-2/neu, and platelet-derived growth factor (PDGF) receptors, have been found to be present in the mouse mammary epithelial cell line HC11. We have investigated the consequences of receptor activation on the growth and differentiation of HC11 cells. HC11 cells are normal epithelial cells which maintain differentiation-specific functions. Treatment of the cells with the lactogenic hormones glucocorticoids and prolactin leads to the expression of the milk protein beta-casein. Activation of EGF receptor has a positive effect on cell growth and causes the cells to become competent for the lactogenic hormone response. HC11 cells respond optimally to the lactogenic hormone mixture and synthesize high levels of beta-casein only if they have been kept previously in a medium containing EGF. Transfection of HC11 cells with the activated rat neuT receptor results in the acquisition of competence to respond to the lactogenic hormones even if the cells are grown in the absence of EGF. The activation of PDGF receptor, through PDGF-BB, also stimulates the growth of HC11 cells. Cells kept only in PDGF do not become competent for lactogenic hormone induction. The results show that activation of the structurally related EGF and c-erbB-2/neu receptors, but not the PDGF receptor, allows the HC11 cells to subsequently respond optimally to lactogenic hormones. 相似文献
8.
Epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) synergistically stimulate placental lactogen (hPL) secretion by placental cells. To understand the mechanism of actions we have investigated a possible heterologous regulatory effect of EGF and IGF-I on each other's receptors. Pretreatment of the cells with IGF-I had no effect on [125I]-EGF binding or the down-regulation of EGF receptor. Pretreatment of the cells with EGF, concomitantly with IGF-I, had no effect on [125I]-IGF-I binding but it augmented the IGF-I down-regulation of IGF-I receptor. The time required to initiate the IGF-I-induced down-regulation of IGF-I receptor was reduced by 4 h in the presence of EGF. IGF-I-down-regulated decreased (P less than 0.05) receptor numbers were further decreased (p less than 0.05) in the presence of EGF. These results suggested that the synergistic effect of EGF and IGF-I seen in hPL secretion by placental cells is not due to direct heterologous hormone-receptor interactive effects. However, the effects seen may be due to a differentiating effect of EGF sensitizing the cells for responsiveness to IGF-I. 相似文献
9.
Cross-communication between heterologous signaling systems and the epidermal growth factor receptor (EGFR) has been shown to be critical for a variety of biological responses: EGFR transactivation when G-protein-coupled receptors (GPCRs) are stimulated represents the paradigm of an interreceptor network that is dependent on G-proteins, kinases, metalloproteases, and growth factor precursors. Investigating the mechanism of this process will help expand our knowledge of physiological regulatory mechanisms and diverse pathophysiological disorders. 相似文献
10.
Epidermal growth factor receptor tyrosine kinase mediates Ras activation by gonadotropin-releasing hormone 总被引:3,自引:0,他引:3
Grosse R Roelle S Herrlich A Höhn J Gudermann T 《The Journal of biological chemistry》2000,275(16):12251-12260
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases. 相似文献
11.
Epidermal growth factor receptor down-regulation induced by UVA in human keratinocytes does not require the receptor kinase activity 总被引:6,自引:0,他引:6
Activation of the epidermal growth factor (EGF) receptor by EGF, its ligand, results in receptor internalization and down-regulation, which requires receptor kinase activity, phosphorylation, and ubiquitination. In contrast, we have found here in human HaCaT keratinocytes that exposure to UVA induces EGF receptor internalization and down-regulation without receptor phosphorylation and ubiquitination. The presence of the receptor kinase activity inhibitor AG1478 increased UVA-induced receptor down-regulation, whereas it inhibited EGF-induced receptor down-regulation. These observations demonstrate that, in contrast to EGF, receptor kinase activity is not required for receptor down-regulation by UVA. Concurrent with receptor down-regulation, caspases were activated by UVA exposure. The presence of caspase inhibitors blocked receptor down-regulation in a pattern similar to poly(ADP)-ribose polymerase cleavage. Much more receptor down-regulation was observed after UVA exposure in apoptotic detached cells in which caspase is activated completely. These results indicate that UVA-induced receptor down-regulation is dependent on caspase activation. Similar to UVA, both UVB and UVC induced receptor down-regulation, in which receptor kinase activity is not required, whereas caspase activation is involved. Inhibition of EGF receptor down-regulation increased receptor activation and activation of its downstream survival signaling ERK and AKT after UVA exposure. Preventing the activation of each of these pathways enhanced apoptosis induced by UVA. These findings suggest that EGF receptor down-regulation by UVA may play an important role in the execution of the cell suicide program by attenuating its anti-apoptotic function and thereby preventing cell transformation and tumorigenesis in vivo. 相似文献
12.
Epidermal growth factor and transforming growth factor alpha bind differently to the epidermal growth factor receptor 总被引:10,自引:0,他引:10
Epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) compete with each other for binding to the EGF receptor. These two growth factors have similar actions, but there are distinguishable differences in their biological activities. It has never been clear how this one receptor can mediate different responses. A monoclonal antibody to the EGF receptor (13A9) has been identified which has only small effects on the binding of EGF to the EGF receptor, but which has very large effects on the binding of TGF alpha to the EGF receptor; 5 micrograms/mL antibody has been shown to totally block 0.87 microM TGF alpha from binding to purified EGF receptor and to lower both the high- and low-affinity binding constants of TGF alpha binding to EGF receptor on A431 cells by about 10-fold. The 13A9 antibody causes a 2.5-fold stimulation of the tyrosine kinase activity of partially purified EGF receptor, compared to a 4.0-fold stimulation of the tyrosine kinase activity by EGF under the same conditions. The data suggest either that the antibody stabilizes a conformation of the EGF receptor which is not favorable for TGF alpha binding or that it blocks a part of the surface of the receptor which is necessary for TGF alpha binding but not EGF binding. 相似文献
13.
14.
Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress 总被引:2,自引:0,他引:2
Reactive oxygen species (ROS) mediate cell damage and have been implicated in the pathogenesis of diseases that involve endothelial injury. Cells possess antioxidant systems, including intracellular antioxidants and ROS scavenging enzymes, that control the redox state and prevent cell damage. In addition to intracellular antioxidants, certain growth factor receptors can be activated under oxidative stress and trigger downstream cell survival signaling cascades. Vascular endothelial growth factor receptor-3 (VEGFR-3) is a primary modulator of lymphatic endothelial proliferation and survival. Here, we provide evidence that activation of VEGFR-3 signaling in response to hydrogen peroxide (H(2)O(2)) promotes endothelial cell survival. Treatment with H(2)O(2) induced the tyrosine phosphorylation of VEGFR-3 and its association with the signaling adaptor proteins Shc, growth factor receptor binding protein 2, Sos, p85, SHP-2, and phospholipase C-gamma. Of note, a hereditary lymphoedema-linked mutant of VEGFR-3 was not phosphorylated by H(2)O(2) treatment. Isoforms of protein kinase C (PKC), alpha and delta, were also tyrosine-phosphorylated after H(2)O(2) stimulation. However, only the delta isoform of PKC was required for H(2)O(2)-induced phosphorylation of VEGFR-3. The tyrosine phosphorylation of VEGFR-3 or isoforms of PKC was completely inhibited by treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, a specific inhibitor for Src family kinases, indicating that Src family kinases are upstream of PKC and VEGFR-3. Furthermore, expression of the wild-type but not the lymphoedema-linked mutant form of VEGFR-3 in porcine artery endothelial cells significantly enhanced the activation of Akt after H(2)O(2) stimulation. Consistent with these biochemical changes, we observed that expression and activation of the wild-type but not the mutant form of VEGFR-3 inhibited H(2)O(2)-induced apoptosis. These studies suggest that VEGFR-3 protects against oxidative damage in endothelial cells, and that patients with hereditary lymphoedema may be susceptible to ROS-induced cell damage. 相似文献
15.
Dise RS Frey MR Whitehead RH Polk DB 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(1):G276-G285
Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR. 相似文献
16.
17.
Sverre H. Torp Eirik Helseth Are Dalen Geirmund Unsgaard 《Cancer immunology, immunotherapy : CII》1991,33(1):61-64
Summary The expression of epidermal growth factor receptor (EGFR) was determined in cryosections of 42 human gliomas using biotinylated epidermal growth factor (B-EGF) and two monoclonal antibodies (mAb) against EGFR. All gliomas were found to express EGFR when examined with B-EGF, whereas 33 expressed EGFR when examined with the two mAbs. The highly malignant gliomas (glioblastomas and anaplastic astrocytomas) had a more heterogeneous staining pattern and a larger proportion of tumour cells staining strongly with B-EGF than did the low-grade gliomas (astrocytomas, oligodendrogliomas, mixed gliomas, and ependymomas). This indicates that high-grade gliomas contain more tumour cells rich in EGFR than do the low-grade gliomas. Reactive astrocytes, ependymal cells, and many types of nerve cells (cerebral cortical pyramidal cells, pyramidal and granular hippocampal cells, Purkinje cells, cerebellar granular cells and neurons in the molecular layer of the cerebellum) expressed EGFR, whereas small neurons and normal glial cells were not found to express EGFR. 相似文献
18.
EGFR主要由三个结构区域组成,即EGF结合区域、跨膜区域和依赖EGF蛋白激酶区域。EGFR被激活后,不仅能使许多底物蛋白磷酸化,自身也发生磷酸化,这些磷酸化作用在信息传导中有重要作用。EGFR与EGF结合后,其复合体以胞饮方式内容形成受体小体,除部分被降解外,大部分在高尔基GERL区加工后到达细胞核调节基因表达。本文通过对受体激活模型和用体外遗传变异方法对变异EGFR的研究阐述了EGFR的结构与功能的关系。 相似文献
19.
Bailly M Wyckoff J Bouzahzah B Hammerman R Sylvestre V Cammer M Pestell R Segall JE 《Molecular biology of the cell》2000,11(11):3873-3883
To determine the distribution of the epidermal growth factor (EGF) receptor (EGFR) on the surface of cells responding to EGF as a chemoattractant, an EGFR-green fluorescent protein chimera was expressed in the MTLn3 mammary carcinoma cell line. The chimera was functional and easily visualized on the cell surface. In contrast to other studies indicating that the EGFR might be localized to certain regions of the plasma membrane, we found that the chimera is homogeneously distributed on the plasma membrane and becomes most concentrated in vesicles after endocytosis. In spatial gradients of EGF, endocytosed receptor accumulates on the upgradient side of the cell. Visualization of the binding of fluorescent EGF to cells reveals that the affinity properties of the receptor, together with its expression level on cells, can provide an initial amplification step in spatial gradient sensing. 相似文献
20.