首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Fructose 2,6-bisphosphate affects phosphoglucomutase from plant and animal sources in a similar way. As previously found with rabbit muscle phosphoglucomutase, fructose 2,6-bisphosphate cannot substitute for glucose 1,6-bisphosphate as a cofactor in the reaction catalyzed by phosphoglucomutase from potato tubers, pea seeds, and string-beans. In the presence of glucose 1,6-bisphosphate, fructose 2,6-bisphosphate inhibits phosphoglucomutase from potato tubers. Activation of phosphoglucomutase from plant sources by fructose 2,6-bisphosphate reported by others was probably due to contamination of the commercial preparation of fructose 2,6-bisphosphate by glucose 1,6-bisphosphate.  相似文献   

2.
Inhibition of phosphoglucomutase by fructose 2,6-bisphosphate   总被引:1,自引:0,他引:1  
Fructose 2,6-bisphosphate inhibits phosphoglucomutase. The inhibition is mixed with respect to glucose 1,6-bisphosphate and non-competitive with respect to glucose 1-phosphate. In contrast with fructose 1,6-bisphosphate and glycerate 1,3-bisphosphate, which also possess inhibitory effect, fructose 2,6-bisphosphate does not phosphorylate phosphoglucomutase. Fructose 2,6-bisphosphate preparations contain contaminants which can explain artefactual results previously reported.  相似文献   

3.
Binding of hexose bisphosphates to muscle phosphofructokinase   总被引:3,自引:0,他引:3  
L G Foe  S P Latshaw  R G Kemp 《Biochemistry》1983,22(19):4601-4606
On the basis of kinetic activation assays, the apparent affinity of muscle phosphofructokinase for fructose 2,6-bisphosphate was about 9-fold greater than that for fructose 1,6-bisphosphate, which in turn was about 10 times higher than that for glucose 1,6-bisphosphate. Equilibrium binding experiments showed that both fructose bisphosphates bind to phosphofructokinase with negative cooperativity; the affinity for fructose 2,6-bisphosphate was about 1 order of magnitude greater than the affinity for fructose 1,6-bisphosphate. Binding of fructose 2,6-bisphosphate to phosphofructokinase was antagonized by fructose 1,6-bisphosphate and glucose 1,6-bisphosphate and vice versa. Both fructose bisphosphates promoted aggregation of the enzyme to higher polymers as indicated by sucrose density gradient centrifugation. Other indicators of phosphofructokinase conformation such as thiol reactivity and maximum activation of in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase gave identical results in the presence of fructose 2,6-bisphosphate, fructose 1,6-bisphosphate, or glucose 1,6-bisphosphate, indicating a common conformation is produced by all three ligands. It is concluded that the sugar bisphosphates bind to a single site on the enzyme.  相似文献   

4.
Fructose 1,6-bisphosphate decreases the activation of yeast 6-phosphofructokinase (ATP:fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11) by fructose 2,6-bisphosphate, especially at cellular substrate concentrations. AMP activation of the enzyme is not influenced by fructose 1,6-bisphosphate. Inorganic phosphate increases the activation by fructose 2,6-bisphosphate and augments the deactivation of the fructose 2,6-bisphosphate activated enzyme by fructose 1,6-bisphosphate. Because various states of yeast glucose metabolism differ in the levels of the two fructose bisphosphates, the observed interactions might be of regulatory significance.  相似文献   

5.
The subunit composition of phosphofructokinase (ATP: D-fructose-6-phosphate-1-phosphotransferase, EC 2.7.1.11) was studied in rat lung during perinatal development. No change in subunit composition during this period was observed. The three subunits of phosphofructokinase (L, M and C) were present in a ratio of approx. 65:25:10, respectively. In addition the levels of two effectors of phosphofructokinase were determined in rat lung during perinatal development: glucose 1,6-bisphosphate and fructose 2,6-bisphosphate. Until day 20 of gestation (term is 22 days) the glucose 1,6-bisphosphate level remains relatively constant (approx. 0.55 mumol/g protein), decreases before birth and increases sharply up to 1.04 mumol/g protein 2 days after birth. The amount of fructose 2,6-bisphosphate in rat lung shows a different developmental profile. A small peak is shown at day 17 of gestation whereas a larger peak up to 36.4 nmol/g protein is shown at days 20 and 21 of gestation. The time of maximal fructose 2,6-bisphosphate content corresponds with the time of glycogen breakdown and acceleration of surfactant synthesis in prenatal rat lung. Both glucose 1,6-bisphosphate and fructose 2,6-bisphosphate stimulate lung phosphofructokinase. Half maximal stimulations occur in the range of 24.1-70.9 microM glucose 1,6-bisphosphate and 0.17-0.34 microM fructose 2,6-bisphosphate.  相似文献   

6.
Glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glycogen, lactate and other glycolytic metabolites were measured in rat gastrocnemius muscle, which was electrically stimulated in situ via the sciatic nerve. Both the frequency and the duration of stimulation were varied to obtain different rates of glycolysis. There was no apparent relationship between fructose 2,6-bisphosphate content and lactate accumulation in contracting muscle. In contrast, glucose 1,6-bisphosphate content increased with lactate concentration during contraction. It is suggested that the increase in glucose 1,6-bisphosphate could play a role in phosphofructokinase stimulation and in the activation of the glycolytic flux during muscle contraction.  相似文献   

7.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

8.
1. Phosphofructokinase (EC 2.7.1.11) from chicken erythrocytes is activated by fructose 2,6-bisphosphate, glucose 1,6-bisphosphate and AMP, and it is inhibited by 2,3-bisphosphoglycerate and inositol hexaphosphate. 2. The stimulatory effects produced by the two bisphosphorylated hexoses are additive and the effects produced by fructose 2,6-bisphosphate and by AMP are synergistic. 3. The activatory effect produced by fructose 2,6-bisphosphate is counteracted by fructose 1,6-bisphosphate. 4. The inhibition produced by both 2,3-bisphosphoglycerate and inositol hexaphosphate is released by fructose 2,6-bisphosphate. 5. It is concluded that, like phosphofructokinase from mammalian tissues, the enzyme from chicken erythrocytes can be modulated by the relative concentrations of those metabolites.  相似文献   

9.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

10.
In contrast to mammalian erythrocytes, chicken erythrocytes contain fructose 2,6-bisphosphate at levels (0.5 nmol/10(9) cells) similar to those of 2,3-bisphosphoglycerate (1.2 nmol/10(9) cells) and slightly lower than those of glucose 1,6-bisphosphate (5.2 nmol/10(9) cells). In chick embryo erythrocytes the levels of both fructose 2,6-bisphosphate and glucose 1,6-bisphosphate are much lower. They begin to increase at hatching and reach the levels in chicken in a few days.  相似文献   

11.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

12.
C Gallego  J Carreras 《FEBS letters》1989,251(1-2):74-78
In rabbit and sheep erythrocytes the concentrations of 2,3-bisphosphoglycerate, fructose 2,6-bisphosphate and glucose 1,6-bisphosphate suffer important changes after birth, which differ in both species. The changes of fructose 2,6-bisphosphate and glucose 1,6-bisphosphate correlate with the changes in the levels of the enzymatic activities involved in their synthesis. The change of 2,3-bisphosphoglycerate levels in rabbit but not in sheep erythrocytes could be explained by the changes of the phosphofructokinase/pyruvate kinase and 2,3-bisphosphoglycerate synthase/2,3-bisphosphoglycerate phosphatase activity ratios.  相似文献   

13.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

14.
B Philippe  G G Rousseau  L Hue 《FEBS letters》1986,200(1):169-172
Epididymal bovine sperm contain fructose-1,6-bisphosphatase activity which is inhibited by AMP and by fructose 2,6-bisphosphate. Sperm phosphofructokinase displays kinetic characteristics that are typical of the F-type and it is stimulated by fructose 2,6-bisphosphate. The concentration of sperm fructose 2,6-bisphosphate remained unaffected at 1-2 microM when the glycolytic rate was either increased by glucose, caffeine or antimycin, or decreased by alpha-chlorohydrin or 6-chloro-6-deoxyglucose.  相似文献   

15.
Fructose 2,6-bisphosphate was identified in Saccharomyces cerevisiae grown on glucose both by its property to be an acid-labile stimulator of 6-phosphofructo 1-kinase and by its ability to be quantitatively converted into fructose 6-phosphate under mild acid conditions. Fructose 2,6-bisphosphate was undetectable in cells grown on non-glucose sources. When glucose was added to the culture, fructose 2,6-bisphosphate was rapidly synthesized, reaching within 1 min concentrations able to cause a profound inhibition of fructose 1,6-bisphosphatase and a great stimulation of 6-phosphofructo 1-kinase.  相似文献   

16.
The hexose bisphosphate activation of phosphoglucomutase was investigated with both plant (pea and mung bean) and animal (rabbit muscle) sources of the enzyme. Plant phosphoglucomutase was purified about 50-fold from seeds, and to a lesser extent, from seedlings of Pisum sativum L. cv Grenadier and seedlings of Phaseolus aureus. It was found that the plant enzyme was isolated in a mostly dephosphorylated form while commercial rabbit muscle phosphoglucomutase was predominantly in the phosphorylated form. Activation studies were done using the dephosphorylated enzymes. The range of activation constant (Ka) values were obtained for each bisphosphate were: for glucose 1-6-P2, 0.5 to 1.8; fructose 2,6-P2, 6 to 11.7; and fructose 1,6-P2, 7 micromolar, respectively. Fructose 2,6-P2 is known to occur in both plant and animal tissues at changing levels encompassing the Ka values found in this study; hence, these results implicate fructose 2,6-P2 as a natural activator of phosphoglucomutase, particularly in plants. Also, glucose 1,6-P2 has not been found in plants, and the method for measuring glucose 1,6-P2 by monitoring the activation of phosphoglucomutase is not specific.  相似文献   

17.
The occurrence of fructose 2,6-bisphosphate was detected in Dictyostelium discoideum. The levels of this compound were compared with those of cyclic AMP and several glycolytic intermediates during the early stages of development. Removal of the growth medium and resuspension of the organism in the differentiation medium decreased the content of fructose 2,6-bisphosphate to about 20% within 1 h, remaining low when starvation-induced development was followed for 8 h. The content of cyclic AMP exhibited a transient increase that did not correlate with the change in fructose 2,6-bisphosphate. If after 1 h of development 2% glucose was added to the differentiation medium, fructose 2,6-bisphosphate rapidly rose to similar levels to those found in the vegetative state, while the increase in cyclic AMP was prevented. The contents of hexose 6-phosphates, fructose 1,6-bisphosphate and triose phosphates changed in a way that was parallel to that of fructose 2,6-bisphosphate, and addition of sugar resulted in a large increase in the levels of these metabolites. The content of fructose 2,6-bisphosphate was not significantly modified by the addition of the 8-bromo or dibutyryl derivatives of cyclic AMP to the differentiation medium. These results provide evidence that the changes in fructose 2,6-bisphosphate levels in D. discoideum development are not related to a cyclic-AMP-dependent mechanism but to the availability of substrate. Fructose 2,6-bisphosphate was found to inhibit fructose-1,6-bisphosphatase activity of this organism at nanomolar concentrations, while it does not affect the activity of phosphofructokinase in the micromolar range. The possible physiological implications of these phenomena are discussed.  相似文献   

18.
L Hue  F Sobrino    L Bosca 《The Biochemical journal》1984,224(3):779-786
Incubation of isolated rat hepatocytes from fasted rats with 0-6 mM-glucose caused an increase in [fructose 2,6-bisphosphate] (0.2 to about 5 nmol/g) without net lactate production. A release of 3H2O from [3-3H]glucose was, however, detectable, indicating that phosphofructokinase was active and that cycling occurred between fructose 6-phosphate and fructose 1,6-bisphosphate. A relationship between [fructose 2,6-bisphosphate] and lactate production was observed when hepatocytes were incubated with [glucose] greater than 6 mM. Incubation with glucose caused a dose-dependent increase in [hexose 6-phosphates]. The maximal capacity of liver cytosolic proteins to bind fructose 2,6-bisphosphate was 15 nmol/g, with affinity constants of 5 X 10(6) and 0.5 X 10(6) M-1. One can calculate that, at 5 microM, more than 90% of fructose 2,6-bisphosphate is bound to cytosolic proteins. In livers of non-anaesthetized fasted mice, the activation of glycogen synthase was more sensitive to glucose injection than was the increase in [fructose 2,6-bisphosphate], whereas the opposite situation was observed in livers of fed mice. Glucose injection caused no change in the activity of liver phosphofructokinase-2 and decreased the [hexose 6-phosphates] in livers of fed mice.  相似文献   

19.
6-Phosphofructokinase purified from honey-bee flight muscle is inhibited by ATP and, unusually, by glucose 1,6-bisphosphate and fructose 1,6-bisphosphate. The inhibition by either of the bisphosphates is not relieved by AMP, but is relieved by fructose 6-phosphate and especially by fructose 2,6-bisphosphate. Lack of effect by AMP is consistent with a low activity of adenylate kinase in this muscle.  相似文献   

20.
The cytoplasmic form of fructose 1,6-bisphosphatase (FBPase) was purified over 60-fold from germinating castor bean endosperm (Ricinus communis). The kinetic properties of the purified enzyme were studied. The preparation was specific for fructose 1,6-bisphosphate and exhibited optimum activity at pH 7.5. The affinity of the enzyme for fructose 1,6-bisphosphate was reduced by AMP, which was a mixed linear inhibitor. Fructose 2,6-bisphosphate also inhibited FBPase and induced a sigmoid response to fructose 1,6-bisphosphate. The effects of fructose 2,6-bisphosphate were enhanced by low levels of AMP. The latter two compounds interacted synergistically in inhibiting FBPase, and their interaction was enhanced by phosphate which, by itself, had little effect. The enzyme was also inhibited by ADP, ATP, UDP and, to a lesser extent, phosphoenolpyruvate. There was no apparent synergism between UDP, a mixed inhibitor, and fructose 2,6-bisphosphate. Similarly ADP, a predominantly competitive inhibitor, did not interact with fructose 2,6-bisphosphate. Possible roles for fructose 2,6-bisphosphate and the other effectors in regulating FBPase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号