共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition. 相似文献
2.
Genetic evidence supporting the existence of two distinct species in the genusGasterosteus around Japan 总被引:1,自引:0,他引:1
Synopsis The genetic and morphological features ofGasterosteus aculeatus were investigated for 29 populations around Japan. Allozyme analyses recognized two groups (Pacific Ocean group and Japan Sea group) that had distinct characteristic features, and showed high genetic differentiation between them (D = 0.482). The Pacific Ocean group had a wide range, from North America to Japan, along the Pacific coast. The distribution of the Japan Sea group was limited around the Sea of Japan and the Sea of Okhotsk. The distribution of these groups were found to be sympatric on the Pacific coast of Hokkaido Island, Japan. From this area, genetic analyses demonstrated that the sympatric populations of the two groups formed independent breeding stocks, and it is considered that the two groups were reproductively isolated from each other. Additionally, each group had distinctive morphological features of lateral plates and caudal keels in the sympatric area. These results suggested that these two groups of the threespine stickleback comprise different species and that the Japan Sea group is taxonomically distinguishable fromG. aculeatus. 相似文献
3.
Diversification of sympatric Sapromyza (Diptera: Lauxaniidae) from Madeira: six morphological species but only four mtDNA lineages 总被引:1,自引:0,他引:1
A series of recent studies on speciation of insects within the Canary Islands have indicated considerable within-island diversification, similar to that described in the Hawaiian islands. Little work has yet been carried out on the neighboring Madeiran archipelago, which is also volcanic. This study examines relationships among all known Lauxaniid flies of the genus Sapromyza from Madeira (including six newly described morphological species) based on mitochondrial gene trees constructed from cytochrome c oxidase (subunit I) and 16S rRNA partial sequences. Phylogenies based on maximum likelihood distances, a Bayesian method based on Markov chain Monte Carlo sampling from the posterior probability distribution, and maximum parsimony show that eight of the nine Madeiran species comprise a single monophyletic group. This clade is also split into two subclades representing black- and yellow/orange-bodied forms. The latter mtDNA clade corresponds to only two species (Sapromyza imitans and Sapromyza indigena) which are not reciprocally monophyletic. Monophyly is strongly supported within four of the six black-bodied species but not for the species pair (Sapromyza inconspicua, Sapromyza laurisilvae). We discuss the double occurrence (at least) of introgressive hybridization/incomplete lineage sorting within this group and suggest that recent speciation is the most likely explanation. The remaining species on the island, Sapromyza madeirensis, is very divergent from the aforementioned group, occupying a more basal position in the tree than the other Atlantic island and continental Sapromyza that were included in the analysis. At least two speciation events for Madeiran Sapromyza appear to correspond to quite ancient periods relative to the age of the island, while others are more recent. This suggests that a combination of island colonization and within-island sympatric and/or vicariance-mediated speciation may explain the observed diversity. 相似文献
4.
Sympatric speciation: when is it possible? 总被引:4,自引:0,他引:4
Alexey S. Kondrashov Mikhail V. Mina 《Biological journal of the Linnean Society. Linnean Society of London》1986,27(3):201-223
This paper is written to compare the results of theoretical investigations of sympatric speciation with the relevant experimental data. We understand sympatric speciation as a formation of species out of a population whose spatial structure is not important genetically. A necessary prerequisite for speciation is an action of disruptive selection on sufficiently polymorphic traits. The present analysis confirms the view that such a selection is ecologically realistic. The genetical part of speciation begins with a development of reproductive isolation between those individuals that are opposed in some characters. It is shown that selection for reproductive isolation may be quite strong. Extinction of intermediate individuals, which completes speciation, proceeds under a wide range of conditions, including those when the newly formed species differ in quantitative characters, though most of the genes arc likely to remain the same in both species. The whole process seems possible if differences in several (up to 10) loci are sufficient to adapt the forming species to different niches and to establish reproductive isolation. It is shown that populations with bimodal distributions of some genetically determined quantitative characters can have a considerable life-time. Such distributions may be formed either as a transition stage of sympatric speciation or represent a stationary state under conditions close to those necessary to complete speciation. They are very important for experimental investigations. Sympatric speciation always follows the same principal course; it does not contradict the idea of a genome coadaptedness. The occurrence of sympatric speciation is different for different taxa depending rather on how frequently populations are subjected to the appropriate kind of selection than on their ability to obey it. 相似文献
5.
Oenanthe conioides is an endangered local endemic of the Lower Elbe river region in Germany where it is found in areas with freshwater tides. Internal transcribed spacer (ITS) and amplified fragment length polymorphism (AFLP) markers were used to investigate its phylogenetic relationships, evolutionary origin, taxonomic status, and genetic structure.Oe. conioides is most closely related to Oe. aquatica and Oe. fluviatilis, and cannot be distinguished from Oe. aquatica by ITS sequence variation. Oe. aquatica is found mainly in standing or slow-flowing freshwater habitats. The AFLP analysis indicated that Oe. conioides may constitute a monophyletic lineage nested within Oe. aquatica. Considering this result on the background of the sympatric distribution of the two species and their ecological differentiation, it is hypothesized that Oe. conioides arose sympatrically from Oe. aquatica through ecological divergence. It is concluded that Oe. conioides is best considered a subspecies of Oe. aquatica.AFLP analysis of Oe. conioides revealed low levels of genetic differentiation among populations reflecting the small geographical distance, the recent decline in population number and size, the connection of populations through the river, and their presumably high population dynamics.Considering this pattern of genetic variation, it is concluded that no individual population can be singled out as being particularly important from a genetic point of view. Also, all populations could be used as source material should the establishment of new populations or the enlargement of small populations be considered as a measure to consolidate the persistence of the species. 相似文献
6.
E. V. Volpi R. Antolini F. Valentino 《Journal of Zoological Systematics and Evolutionary Research》1989,27(3):246-251
We tested the reroductive compatibility existing between four geographically different populations of Proaselis coxalis (Crustacea Isopoda) collected in the river Sarno (near Naples) and on three Sicilian sites: San Domenico; Villa Grazia di Carini and Enna. By means of laboratory hybridization experiments (“no-choice” method) we investigated and characterized the reproductive isolation established between these populations under allopatric conditions. The populations San Domenico and Enna are reproductively isolated from Villa Grazia di Carini and Sarno, so that they may be considered as belonging to different species. The mechanism of reproductive isolation are of postzygotic nature only: embronic death, hbrid inviability and sterility of the surviving hybrids. These results agree with tie theory of aioatric speciation, according to which in the first phase of speciation only post-zygotic mechanisms occur as an accidental product of genetic divergence. 相似文献
7.
Sarah A. Cowles J. Albert C. Uy 《Evolution; international journal of organic evolution》2019,73(8):1647-1662
Examining what happens when two closely related species come into secondary contact provides insight into the later stages of the speciation process. The Zosteropidae family of birds is one of the most rapidly speciating vertebrate lineages. Members of this family are highly vagile and geographically widespread, raising the question of how divergence can occur if populations can easily come into secondary contact. On the small island of Kolombangara, two closely related nonsister species of white‐eyes, Zosterops kulambangrae and Zosterops murphyi, are distributed along an elevational gradient and come into secondary contact at mid‐elevations. We captured 134 individuals of both species along two elevational transects. Using genotyping‐by‐sequencing data and a mitochondrial marker, we found no evidence of past hybridization events and strong persistence of species boundaries, even though the species have only been diverging for approximately 2 million years. We explore potential reproductive barriers that allow the two species to coexist in sympatry, including premating isolation based on divergence in plumage and song. We also conducted a literature review to determine the time it takes to evolve complete reproductive isolation in congeneric avian species/subspecies in secondary contact (restricted to cases where congeneric taxa are parapatric or have a hybrid zone), finding our study is one of the youngest examples of complete reproductive isolation studied in a genomic context reported in birds. 相似文献
8.
Thomas E. Dowling Richard E. Broughton Bruce D. DeMarais 《Evolution; international journal of organic evolution》1997,51(5):1574-1583
Samples of Luxilus cornutus, Luxilus chrysocephalus, and their hybrids were collected along hypothesized routes of dispersal from Pleistocene refugia to examine the significance of geographic variation in patterns of introgression between these species. Patterns of allozyme and mitochondrial DNA (mtDNA) variation were generally consistent with those from previous studies. Tests of Hardy-Weinberg equilibrium revealed significant deficiencies of heterozygotes in all samples, indicating some form of reproductive isolation. Mitochondrial DNAs of each species were not equally represented in F1 hybrids; however, this bias was eliminated when the two largest samples were excluded from the analysis. Backcross hybrids exhibited biased mtDNA introgression, as samples from Lake Erie (eastern) and Lake Michigan (western) drainages showed significant excesses of mtDNAs from L. chrysocephalus and L. cornutus, respectively, relative to frequencies of diagnostic allozyme markers. The extent and direction of allozyme and mtDNA introgression was quantified by calculating isolation index values from morphologically “pure” individuals of each species from each locality. Analysis of variance of these measures identified limited introgression of allozyme variants with no geographic pattern, but significant differences in direction of mtDNA introgression between drainages (i.e., postglacial dispersal route). Association between patterns of mtDNA introgression and dispersal route across the latitudinal width of the contact zone is best explained by genetic divergence during past isolation of ancestral populations from these drainages. These results identify a significant role for historical effects in the evolution of reproductive isolation and the process of speciation. 相似文献
9.
Kyle Christie Sharon Y. Strauss 《Evolution; international journal of organic evolution》2019,73(7):1375-1391
Speciation occurs when reproductive barriers substantially reduce gene flow between lineages. Understanding how specific barriers contribute to reproductive isolation offers insight into the initial forces driving divergence and the evolutionary and ecological processes responsible for maintaining diversity. Here, we quantified multiple pre‐ and post‐pollination isolating barriers in a pair of closely related California Jewelflowers (Streptanthus, Brassicaceae) living in an area of sympatry. S. breweri and S. hesperidis are restricted to similar serpentine habitats; however, populations are spatially isolated at fine‐scales and rarely co‐occur in intermixed stands. Several intrinsic postzygotic barriers were among the strongest we quantified, yet, postzygotic barriers currently contribute little to overall reproductive isolation due to the cumulative strength of earlier‐acting extrinsic barriers, including spatial isolation, and flowering time and pollinator differences. Data from multiple years suggest that pre‐pollination barriers may have different strengths depending on annual environmental conditions. Similarly, crossing data suggest that the strength of intrinsic isolation may vary among different population pairs. Estimates of total reproductive isolation in S. breweri and S. hesperidis are robust to uncertainty and variability in individual barrier strength estimates, demonstrating how multiple barriers can act redundantly to prevent gene flow between close relatives living in sympatry. 相似文献
10.
Anetta Borkowska 《Behavioural processes》2011,86(1):39-45
Variation of reproductive success, an important determinant of the opportunity for sexual selection, is an outcome of competition within one sex for mating with members of the other sex. In promiscuous species, males typically compete for access to females, and their reproductive strategies are strongly related to the spatial distribution of females. I used 10 microsatellite loci and the mtDNA control region to determine seasonal differences in the reproductive success of males and females of the common vole (Microtus arvalis), one of the most numerous mammals in Europe. The sex-related spatial structure and bias in dispersal between genders were also assessed. Standardized variance of the reproductive success of females did not vary seasonally due to the continuity of female philopatry throughout the breeding season and to the constancy of the number of females reproducing successfully in each season. The males are the dispersing sex, undergoing both natal and breeding dispersal. Their standardized variance of reproductive success was significantly higher than that for females in July, when only two males monopolized 80% of the females in the population and when variance of male reproductive success was highest (Im = 7.70). The seasonally varying and high standardized variance of male reproductive success may be explained by male-male competition for matings, coupled with seasonal changes in the age structure of the population. 相似文献
11.
Jörgen Ripa 《Evolutionary ecology》2009,23(1):31-52
The plausibility of sympatric speciation has long been debated among evolutionary ecologists. The process necessarily involves
two key elements: the stable coexistence of at least two ecologically distinct types and the emergence of reproductive isolation.
Recent theoretical studies within the theoretical framework of adaptive dynamics have shown how both these processes can be
driven by natural selection. In the standard scenario, a population first evolves to an evolutionary branching point, next,
disruptive selection promotes ecological diversification within the population, and, finally, the fitness disadvantage of
intermediate types induces a selection pressure for assortative mating behaviour, which leads to reproductive isolation and
full speciation. However, the full speciation process has been mostly studied through computer simulations and only analysed
in part. Here I present a complete analysis of the whole speciation process by allowing for the simultaneous evolution of
the branching ecological trait as well as a continuous trait controlling mating behaviour. I show how the joint evolution
can be understood in terms of a gradient landscape, where the plausibility of different evolutionary paths can be evaluated
graphically. I find sympatric speciation unlikely for scenarios with a continuous, unimodal, distribution of resources. Rather,
ecological settings where the fitness inferiority of intermediate types is preserved during the ecological branching are more
likely to provide opportunity for adaptive, sympatric speciation. Such scenarios include speciation due to predator avoidance
or specialization on discrete resources.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
12.
Smith JA Tierney SM Park YC Fuller S Schwarz MP 《Molecular phylogenetics and evolution》2007,43(3):1131-1137
Phylogenetic studies on insect social parasites have found very close host-parasite relationships, and these have often been interpreted as providing evidence for sympatric speciation. However, such phylogenetic inferences are problematic because events occurring after the origin of parasitism, such as extinction, host switching and subsequent speciation, or an incomplete sampling of taxa, could all confound the interpretation of phylogenetic relationships. Using a tribe of bees where social parasitism has repeatedly evolved over a wide time-scale, we show the problems associated with phylogenetic inference of sympatric speciation. Host-parasite relationships of more ancient species appear to support sympatric speciation, whereas in a case where parasitism has evolved very recently, sympatric speciation can be ruled out. However, in this latter case, a single extinction event would have lead to relationships that support sympatric speciation, indicating the importance of considering divergence ages when analysing the modes of social parasite evolution. 相似文献
13.
Sympatric speciation and radiative evolution of socially parasitic ants - Heretic hypotheses and their factual background 总被引:2,自引:0,他引:2
A. Buschinger 《Journal of Zoological Systematics and Evolutionary Research》1990,28(4):241-260
According to current hypotheses the main types of social parasitism among ants, namely slavery, temporary parasitism, and inquilinism, arose from such features as predation on other ants, or territorial behavior, both presumed precursors of slavemaking, and polygyny, a presumed precursor of temporary parasitism and inquilinism. The latter is believed also to represent a final instar in several evolutionary pathways leading from slavery, temporary parasitism, and xenobiosis to this permanently parasitic, workerless condition. Speciation, the origin of parasitic species from their usually closely related host species, is suggested to occur due to temporary geographic isolation and subsequent transition of one of the newly formed daughter species to parasitism in the nests of the other. Evidence is presented suggesting that the main types of social parasitism originated independently of each other. 15 ant genera are parasitized exclusively by inquilines, Eve other genera exclusively by temporary parasites. Only four groups of non-parasitic ant species (Formica, Tet-ramorium, Leptothorax subgenera Leptothorax and Myrafant) have parasites of several types each. Within these roups, however, there is little evidence of evolutionary transitions from one type to another. The few exceptions, mainly workerless species of the genera Epimyrma and Chalepoxenus, represent parasites which clearly derive from slave-making congeners, but differ from ordinary inquilines in that they eliminate the host colony queens like their actively dulotic ancestors. The new hypothesis suggests that all forms of interspecific true social parasitism (excluding xenobiosis) orginated from a common “preparasitic” stage, a subpopulation of reproductives in polygynous colonies and species, with diverging sexual behavior (near-nest mating vs. swarming) and caste ratios (production of more sexuals vs. workers). Arguments for sympatric speciation are compiled. Various features of the ancestral, and then host species (colony sizes, population density and structure, transition from polygyny to monoyny, etc.), and of the “preparasite” (production of few, or no workers, etc.) may shape the developing parasite to become a slave-maker, inquiline, or temporary parasite. These features usually leave open only one, or in a few genera, several options. The different types of parasitism within one host species group thus may have developed in a radiative manner from the common, preparasitic stage, which explains that independent colony foundation is a common feature of all true social parasites among ants. 相似文献
14.
贵州从江侗族Y-DNA及线粒体DNA 序列多态性分析 总被引:3,自引:3,他引:3
为分析贵州从江侗族父系及母系遗传结构,探讨其起源及迁徒, 通过聚合酶链式反应-限制性片段长度多态性(PCR-RFLP), 研究贵州从江侗族无亲缘关系个体由10个单核苷酸位点(SNPs)组成的Y染色体单倍型及11个单核苷酸位点组成的线粒体DNA单倍群频率。结果显示, 从40份男性样本的Y-SNP基因分型中,得到H6 、H11、H14 共3种单倍型;H11的频率为92.5%;通过对线粒体DNA基因分型,得到6种单倍群,有75%的个体能明确分类其所携带的单倍群特征,说明贵州从江侗族父系遗传构成相对简单。通过主成分分析,证明贵州从江侗族与其他的壮侗语族人群相聚,母系遗传结构复杂,无C单倍群分布可能为该民族特征之一。Abstract: To study the patrilineal and matrilineal genetic structure and the origin of Dong Ethnic of Congjiang Guizhou. Study the distribution of Y-chromosome haplotypes which consisted of 10 SNPs of Y-DNA and mtDNA haplogroups consisted of 11 SNPs by using PCR-RFLP method. The result is three haplotypes H6,H11,H14 were detected, the frequency of H11 is 92.5%. Six haplogroups were identified by mtDNA analysis, 75% of the people can be identified. The patrilineal genetic structure of Dong of Guizhou is simple, Principle component indicated that the structure is closer to Zhuang-Dong branch of Sino-Tibetan language family. The matrilineal genetic structure of Dong of Guizhou is complicated. 相似文献
15.
《Fungal biology》2022,126(3):250-266
Many species in the Fusarium fujikuroi Species Complex (FFSC) have an affinity for grass species, with whom they live in an endophytic association or cause disease. We recovered isolates of Fusarium from agriculturally important grasses in Africa and Brazil, and characterized them with morphological markers, mating type, and Amplified Fragment Length Polymorphisms (AFLPs). We also conducted multi-locus phylogenetic analyses based on partial DNA sequences of translation elongation factor-1α (TEF1), β-tubulin (TUB), and the second largest subunit of RNA polymerase (RPB2) gene regions. Sexual cross fertility was used to test the biological species concept and the sexual stage of F. madaense is described. A novel species within the FFSC, Fusarium mirum, that is different from the other known species in the complex, was formally described. Fusarium mirum, F. madaense, and Fusarium andiyazi are a tightly intertwined species trio that are morphologically identical, but phylogenetically distinguishable, and amongst whom interspecific genetic exchange may still occur. These three species are so close that they cannot be reliably distinguished if only sequences of the TEF1 gene are used. In pathogenicity tests, all tested isolates of F. madaense from sugarcane, sorghum, maize, millet and Brachiaria could induce stalk rot in sorghum, maize and millet, and pokkah boeng in sugarcane. This study increases our understanding of the diversity of species within the FFSC that cause disease in tropical grasses or act as endophytes, and their geographic distributions. The genetically close relationship between F. mirum, F. madaense, and F. andiyazi provides an opportunity to study and identify factors underlying their limited inter-specific cross-fertility and sympatric speciation. 相似文献
16.
Sevan S. Suni Robin Hopkins 《Evolution; international journal of organic evolution》2018,72(7):1387-1398
The process of speciation involves the accumulation of reproductive isolation (RI) between diverging lineages. Selection can favor increased RI via the process of reinforcement, whereby costs to hybridization impose selection for increased prezygotic RI. Reinforcement results in phenotypic divergence within at least one taxon, as a result of costly hybridization between sympatric taxa. The strength of selection driving reinforcement is determined by the cost of hybridization and the frequency of hybridization. We investigated the cost of hybridization by quantifying postmating RI barriers among Phlox species that comprise one of the best‐studied cases of reinforcement. We determined if the strength of RI differs among lineages that have and have not undergone reinforcement, how much variability there is within species in RI, and whether RI is associated with phylogenetic relatedness. We found high RI for the species that underwent phenotypic divergence due to reinforcement; however, RI was also high between other species pairs. We found extensive variability in RI among individuals within species, and no evidence that the strength of RI was associated with phylogenetic relatedness. We suggest that phenotypic divergence due to reinforcement is associated with the frequency of hybridization and introgression, and not the cost of hybridization in this clade. 相似文献
17.
18.
Summary Two distinct forms of killer whale (Orcinus orca) occur off the coast of British Columbia, Alaska and Washington State. These have different diets, and may be reproductively isolated. Because the primary food of transient whales (pinnipeds) is a potential competitor for the primary food of resident whales (salmon), or for the smaller fishes on which salmon feed, there should be an indirect interaction between the two forms of killer whale. We use simple mathematical models to show that this interaction will be either of a plus-minus type, or a plus-plus type (indirect mutualism), depending on whether or not pinnipeds and residents are on the same trophic level. In the case of the plus-minus interaction, increasing the population density or improving the environmental conditions of transients will increase the population density of residents, while increasing resident populations will reduce the equilibrium population size of transients. In the case of the plus-plus interaction, increasing the population density or improving the environmental conditions of transients will increase the population density of residents, while increasing resident populations will reduce the equilibrium population size of transients. In the case of the plus-plus interaction, increasing the population density or improving the environmental conditions of transients will increase the population density of residents, and vice versa. Such effects may not be currently manifest due to reduced populations at most levels in the food web. Regardless, considering such indirect interactions may be important for the management of many of the species involved, and can also provide a valuable framework for examining the evolution of the two forms of killer whales. Frequency-dependent indirect interactions, acting in concert with density-dependence within populations and disruptive selection on prey-type specific foraging characteristics, may have favoured reproductive isolation of the two forms of killer whales. We suggest that these two forms of whale are in the process of speciating, i.e., the two forms are incipient species. 相似文献
19.
Examination of genetic and ecological relationships within sibling species complexes can provide insights into species diversity and speciation processes. Alpheus angulatus and A. armillatus, two snapping shrimp species with overlapping ranges in the north-western Atlantic, are similar in morphology, exploit similar ecological niches and appear to represent recently diverged sibling species. We examined phylogenetic and ecological relationships between these two species with: (i) sequence data from two mitochondrial genes (16S rRNA and COI); (ii) data on potential differences in microhabitat distribution for A. armillatus and A. angulatus; and (iii) data from laboratory experiments on the level of reproductive isolation between the two species. DNA sequence data suggest A. armillatus and A. angulatus are sister species that diverged subsequent to the close of the Isthmus of Panama, and that haplotype diversity is lower in A. armillatus than in A. angulatus. Both species are distantly related to A. heterochaelis and A. estuariensis, two species with which A. angulatus shares some similarities in coloration. Ecological data on the distribution of A. angulatus and A. armillatus from two locations revealed differences in distribution of the two species between habitat patches, with each patch dominated by one or the other species. However, there was no apparent difference in distribution of the two species within habitat patches with respect to microhabitat location. Ecological data also revealed that heterospecific individuals often occur in close proximity (i.e. within metres or centimetres) where sympatric. Behavioural data indicated that these species are reproductively isolated, which is consistent with speciation in transient allopatry followed by post-divergence secondary contact. Our data further resolve taxonomic confusion between the sibling species, A. armillatus and A. angulatus, and suggest that sympatry in areas of range overlap and exploitation of similar ecological niches by these two recently diverged species have selected for high levels of behavioural incompatibility. 相似文献
20.
The host suitability of Centrosema pubescens (Leguminosae) was evaluated within two sympatric populations feeding on Solanum plants (Solanaceae) and C. pubescens in Epilachna vigintioctopunctata in Malaysia (Kuala Lumpur) and Indonesia (Bogor and Padang). In the Bogor and Padang populations, Centrosema strains had a significantly higher emergence rate than sympatric Solanum strains. In Kuala Lumpur, there was no significant difference in emergence rates between the two strains. When Centrosema strains from Kuala Lumpur and Padang were reared and maintained solely on Solanum plants, the emergence rate on C. pubescens gradually decreased with successive rearing generation and resulted in 0% in the 7th or 20th generations. These findings suggest that the current host suitability of C. pubescens depends on the previous experience of each population with the use of this plant as a host. However, we were not able to demonstrate from laboratory selection that Solanum strains increase the host adaptation to C. pubescens because every Solanum strain became extinct in the third generation when reared solely on C. pubescens. Received: August 16, 1999 / Accepted: June 5, 2000 相似文献