首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Piperlongumine (PL) is a very promising natural agent with a high potential for cancer treatment. To overcome the poor water solubility of PL, there is a need to develop a novel water‐soluble formulation in which PL is non‐covalently bound to human serum albumin (HSA). PL binding to HSA was studied by various spectroscopic techniques under simulated physiological conditions. Spectroscopic evidence showed that the interaction of PL with HSA could form a PL–HSA complex. The binding constant (Ka) values increased with increasing temperature, and a similar dependence was observed for the number of binding sites (n) values. The number of PL molecules bound to HSA reached 8.1 when the temperature was raised to 308 K. Thermodynamic calculation results suggested that the binding reaction occurred spontaneously but was an entropy‐driven process, and hydrophobic forces played a major role in stabilizing the complex. Furthermore, PL binding induced conformational and microenvironmental changes in HSA. Displacement studies indicated that PL and warfarin had separate binding regions in site I. Therefore, it would be possible to develop a novel water‐soluble formulation involving PL and HSA. This study may provide some valuable information in terms of improving the poor water solubility of PL.  相似文献   

2.
It is well known that various physiological factors such as pH, endogenous substances or post-translational modifications can affect the conformational state of human serum albumin (HSA). In a previous study, we reported that both pH- and long chain fatty acid-induced conformational changes can alter the interactive binding of ligands to the two principal binding sites of HSA, namely, site I and site II. In the present study, the effect of metal-catalyzed oxidation (MCO) caused by ascorbate/oxygen/trace metals on HSA structure and the interactive binding between dansyl-L-asparagine (DNSA; a site I ligand) and ibuprofen (a site II ligand) at pH 6.5 was investigated. MCO was accompanied by a time-dependent increase in carbonyl content in HSA, suggesting that the HSA was being oxidized. In addition, The MCO of HSA was accompanied by a change in net charge to a more negative charge and a decrease in thermal stability. SDS-PAGE patterns and α-helical contents of the oxidized HSAs were similar to those of native HSA, indicating that the HSA had not been extensively structurally modified by MCO. MCO also caused a selective decrease in ibuprofen binding. In spite of the changes in the HSA structure and ligand that bind to site II, no change in the interactive binding between DNSA and ibuprofen was observed. These data indicated that amino acid residues in site II are preferentially oxidized by MCO, whereas the spatial relationship between sites I and II (e.g. the distance between sites), the flexibility or space of each binding site are not altered. The present findings provide insights into the structural characteristics of oxidized HSA, and drug binding and drug-drug interactions on oxidized HSA.  相似文献   

3.
Human serum albumin (HSA) and bovine β-lactoglobulin (β-Lg) are both introduced as blood and oral carrier scaffolds with high affinity for a wide range of pharmaceutical compounds. Prodigiosin, a natural three pyrrolic compound produced by Serratia marcescens, exhibits many pharmaceutical properties associated with health benefits. In the present study, the interaction of prodigiosin with HSA and β-Lg was investigated using fluorescence spectroscopy, circular dichroism (CD) and computational docking. Prodigiosin interacts with the Sudlow’s site I of HSA and the calyx of β-Lg with association constant of 4.41 × 104 and 1.99 × 104 M−1 to form 1:1 and 2:3 complexes at 300 K, respectively. The results indicated that binding of prodigiosin to HSA and β-Lg caused strong fluorescence quenching of both proteins through static quenching mechanism. Electrostatic and hydrophobic interactions are the major forces in the stability of PG–HSA complex with enthalpy- and entropy-driving mode, although the formation of prodigiosin–β-Lg complex is entropy-driven hydrophobic associations. CD spectra showed slight conformational changes in both proteins due to the binding of prodigiosin. Moreover, the ligand displacement assay, pH-dependent interaction and protein–ligand docking study confirmed that the prodigiosin binds to residues located in the subdomain IIA and IIIA of HSA and central calyx of β-Lg.  相似文献   

4.
Five‐nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure‐activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligand‐promiscuity of HSA. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 161–170, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
The interaction between paracetamol and human serum albumin (HSA) under physiological conditions has been investigated by fluorescence, circular dichroism (CD) and docking. Fluorescence data revealed that the fluorescence quenching of HSA by paracetamol was the result of the formed complex of HSA–paracetamol, and the binding constant (Ka) and binding number obtained is 1.3 × 104 at 298 K and 2, respectively for the primary binding site. Circular dichorism spectra showed the induced conformational changes in HSA by the binding of paracetamol. Moreover, protein–ligand docking study indicated that paracetamols (two paracetamols bind to HSA) bind to residues located in the subdomain IIIA.  相似文献   

6.
ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of d-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.15 Å, 2.2 Å, and 2.2 Å resolutions, respectively. The ligand-bound open form is the first such structure to be reported at high resolution; the combination of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region. The open liganded structure shows that xylose binds first to the C-terminal domain, with only very small conformational changes resulting. After a 34° closing motion, additional interactions are formed with the N-terminal domain; changes in this domain are larger and serve to make the structure more ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications for how the individual proteins act in concert with their respective membrane permeases.  相似文献   

7.
Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein–ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone” design methods perform poorly on these tests, we develop a new “coupled moves” design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein – ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.  相似文献   

8.
Human serum albumin (HSA) is best known for its extraordinary ligand binding capacity. HSA has a high affinity for heme and is responsible for the transport of medium and long chain fatty acids. Here, we report myristate binding to the N and B conformational states of Mn(III)heme-HSA (i.e. at pH 7.0 and 10.0, respectively) as investigated by optical absorbance and NMR spectroscopy. At pH 7.0, Mn(III)heme binds to HSA with lower affinity than Fe(III)heme, and displays a water molecule coordinated to the metal. Myristate binding to a secondary site FAx, allosterically coupled to the heme site, not only increases optical absorbance of Mn(III)heme-bound HSA by a factor of approximately three, but also increases the Mn(III)heme affinity for the fatty acid binding site FA1 by 10-500-fold. Cooperative binding appears to occur at FAx and accessory myristate binding sites. The conformational changes of the Mn(III)heme-HSA tertiary structure allosterically induced by myristate are associated with a noticeable change in both optical absorbance and NMR spectroscopic properties of Mn(III)heme-HSA, allowing the Mn(III)-coordinated water molecule to exchange with the solvent bulk. At pH = 10.0 both myristate affinity for FAx and allosteric modulation of FA1 are reduced, whereas cooperation of accessory sites and FAx is almost unaffected. Moreover, Mn(III)heme binds to HSA with higher affinity than at pH 7.0 even in the absence of myristate, and the metal-coordinated water molecule is displaced. As a whole, these results suggest that FA binding promotes conformational changes reminiscent of N to B state HSA transition, and appear of general significance for a deeper understanding of the allosteric modulation of ligand binding properties of HSA.  相似文献   

9.
Human serum albumin (HSA) has seven common fatty acid (FA) binding sites. In this study, we used the molecular mechanics Poisson-Boltzmann surface area method to identify high affinity FA binding sites on HSA in terms of binding free energy. Using multiple HSA-FA (myristate, palmitate) complex models constructed by molecular dynamics simulations, two methods were performed in molecular mechanics Poisson-Boltzmann surface area, the “three-trajectory method” and the “single-trajectory method”. The former, which is less precise than the latter but may be more accurate as it includes the effects of conformational change upon binding, was used to classify high and low affinity sites. As a result, Sites 2, 4, and 5 were identified as high affinity sites for both FAs. The latter method, which is precise because energies are calculated from snapshots of the same trajectory for HSA-FAcomplex, was performed to compare the magnitude of binding free energy for these sites. The order of magnitude was 5 > 4 > 2, identical to that of a previous publication by others. In this way, a combination of the two methods was effectively used to identify high affinity sites. This study therefore provides an insight into the quantitative identification of high affinity FA binding sites on HSA.  相似文献   

10.
The current study reports the binding of curcumin (CUR) as the main pharmacologically active ingredient of turmeric and diacetylcurcumin (DAC) as a bioactive derivative of curcumin to human serum albumin (HSA) and bovine serum albumin (BSA). The apparent binding constants and number of substantive binding sites have been evaluated by fluorescence quenching method. The distance (r) between donor (HSA and BSA) and acceptor (CUR and DAC) was obtained on the basis of the Förster’s theory of non-radiative energy transfer. The minor changes on the far-UV circular dichroism spectra resulted in partial changes in the calculated secondary structure contents of HSA and BSA. The negligible alteration in the secondary structure of both albumin proteins indicated that ligand-induced conformational changes are localized to the binding site and do not involve considerable changes in protein folding. The visible CD spectra indicated that the optical activity observed during the ligand binding due to induced-protein chirality. All of the achieved results suggested the important role of the phenolic OH group of CUR in the binding process.  相似文献   

11.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

12.
The interactions of human serum albumin (HSA) with a number of ligands (mostly drugs) were examined by proton nuclear magnetic resonance spectroscopy. Ligand presence-absence difference spectra of HSA solutions were measured. Nonspecifically bound drugs such as tiaramide showed difference spectrum patterns which were similar to the spectra of the drugs themselves but were broadened as to the line-widths of signals. Thus, the difference spectra of these drugs reflect only the changes in the surroundings of the drug molecules, that is, between the bound and free states. In contrast, specifically bound drugs like ibuprofen and warfarin showed difference spectra in which signals from the HSA molecule only were observed. Furthermore, according to the characteristic peaks in these difference spectrum patterns, specifically bound drugs may be classified into several groups; the drugs in the first group bind to the ibuprofen binding site, those in the second group to the warfarin binding site, and those in the third group to sites other than the warfarin and ibuprofen sites. These findings suggest that the specific binding of drugs to HSA brings about a conformational change of this protein which is specifically correlated to the binding site.  相似文献   

13.
Proteins are dynamic molecules and often undergo conformational change upon ligand binding. It is widely accepted that flexible loop regions have a critical functional role in enzymes. Lack of consideration of binding site flexibility has led to failures in predicting protein functions and in successfully docking ligands with protein receptors. Here we address the question: which sequence and structural features distinguish the structurally flexible and rigid binding sites? We analyze high-resolution crystal structures of ligand bound (holo) and free (apo) forms of 41 proteins where no conformational change takes place upon ligand binding, 35 examples with moderate conformational change, and 22 cases where a large conformational change has been observed. We find that the number of residue-residue contacts observed per-residue (contact density) does not distinguish flexible and rigid binding sites, suggesting a role for specific interactions and amino acids in modulating the conformational changes. Examination of hydrogen bonding and hydrophobic interactions reveals that cases that do not undergo conformational change have high polar interactions constituting the binding pockets. Intriguingly, the large, aromatic amino acid tryptophan has a high propensity to occur at the binding sites of examples where a large conformational change has been noted. Further, in large conformational change examples, hydrophobic-hydrophobic, aromatic-aromatic, and hydrophobic-polar residue pair interactions are dominant. Further analysis of the Ramachandran dihedral angles (phi, psi) reveals that the residues adopting disallowed conformations are found in both rigid and flexible cases. More importantly, the binding site residues adopting disallowed conformations clustered narrowly into two specific regions of the L-Ala Ramachandran map. Examination of the dihedral angles changes upon ligand binding shows that the magnitude of phi, psi changes are in general minimal, although some large changes particularly between right-handed alpha-helical and extended conformations are seen. Our work further provides an account of conformational changes in the dihedral angles space. The findings reported here are expected to assist in providing a framework for predicting protein-ligand complexes and for template-based prediction of protein function.  相似文献   

14.
Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational‐selection and induced‐change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational‐selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced‐change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on‐ and off‐rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single‐molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational‐selection and induced‐change processes in both binding and unbinding direction.  相似文献   

15.
Human serum albumin (HSA) has been used as a model for the binding of a number of different ligands, including polyaromatic hydrocarbons, to proteins. In this case we have investigated the interaction of HSA with a novel set of perylene derivatives. Di-substituted perylene analogues have been synthesized as potentially useful organic photovoltaic materials. Their photophysical properties may make them viable for fuel cell applications too. However, these molecules are poorly soluble especially in aqueous solvents. Binding to water-soluble proteins may provide a way to solubilize them. At the same time one can study whether the photophysical processes initiated by the irradiation of a perylene ligand can cause conformational changes to the host protein. With the present study we demonstrated that of the three perylene derivatives investigated only one, the dimethoxy analogue, has a significant affinity for HSA at a binding site near the bottom of the central cleft (in proximity of the Trp214 residue). The small affinity prevents any significant photoinduced changes to occur in the protein.  相似文献   

16.
Ligand binding studies on carrier proteins are crucial in determining the pharmacological properties of drug candidates. Here, a new palladium(II) complex was synthesized and characterized. The in vitro binding studies of this complex with two carrier proteins, human serum albumin (HSA), and β-lactoglobulin (βLG) were investigated by employing biophysical techniques as well as computational modeling. The experimental results showed that the Pd(II) complex interacted with two carrier proteins with moderate binding affinity (Kb ≈ .5 × 104 M?1 for HSA and .2 × 103 M?1 for βLG). Binding of Pd(II) complex to HSA and βLG caused strong fluorescence quenching of both proteins through static quenching mechanism. In two studied systems hydrogen bonds and van der Waals forces were the major stabilizing forces in the drug-protein complex formation. UV–Visible and FT-IR measurements indicated that the binding of above complex to HSA and βLG may induce conformational and micro-environmental changes of two proteins. Protein–ligand docking analysis confirmed that the Pd(II) complex binds to residues located in the subdomain IIA of HSA and site A of βLG. All these experimental and computational results suggest that βLG and HSA might act as carrier protein for Pd(II) complex to deliver it to the target molecules.  相似文献   

17.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric proteins that evoke electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are activated by hyperpolarizing voltage but are also receptors for the intracellular ligand adenosine-3′,5′-cyclic monophosphate (cAMP) that enhances activation but is unable to activate the channels alone. Using fcAMP, a fluorescent derivative of cAMP, we analyzed the effect of ligand binding on HCN2 channels not preactivated by voltage. We identified a conformational flip of the channel as an intermediate state following the ligand binding and quantified it kinetically. Globally fitting the time courses of ligand binding and unbinding revealed modest cooperativity among the subunits in the conformational flip. The intensity of this cooperativity, however, was only moderate compared to channels preactivated by hyperpolarizing voltage. These data provide kinetic information about conformational changes proceeding in nonactivated HCN2 channels when cAMP binds. Moreover, our approach bears potential for analyzing the function of any other membrane receptor if a potent fluorescent ligand is available.  相似文献   

18.
This study was undertaken to investigate the influence of fatty acid binding on the unfolding of HSA and how the fatty acid molecules can influence and/or compete with other ligand molecules bound to the protein. The equilibrium unfolding of fatted and fatty acid free HSA was measured by overlapping of unfolding transition curves monitored by different probes for secondary and tertiary structure and determining changes in free energy of unfolding. Proteins stability was studied by fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism techniques. We have suggested a "molten globule" like intermediate state of HSA at a fairly high concentration of GnHCl (3.2 for fatty acid free and 3.6 for fatted). The free energy of stabilization (DeltaG(D)(H2O)) in the presence of fatty acid was found to be 900 cal mol(-1). We also analyze the effects of fatty acid on binding of ligands using spectroscopic technique and reported the equilibrium constants and free energies obtained from the binding and unfolding experiments.  相似文献   

19.
The functions of N-acylethanolamines, minor constituents of mammalian cells, are poorly understood. It was suggested that NAEs might have some pharmacological actions and might serve as a cytoprotective response, whether mediated by physical interactions with membranes or enzymes or mediated by activation of cannabinoid receptors. Albumins are identified as the major transport proteins in blood plasma for many compounds including fatty acids, hormones, bilirubin, ions, and many drugs. Moreover, albumin has been used as a model protein in many areas, because of its multifunctional binding properties. Bovine (BSA) and human (HSA) serum albumin are similar in sequence and conformation, but differ for the number of tryptophan residues. This difference can be used to monitor unlike protein domains. Our data suggest that NOEA binds with high affinity to both albumins, modifying their conformational features. In both proteins, NOEA molecules are linked with higher affinity to hydrophobic sites near Trp-214 in HSA or Trp-212 in BSA. Moreover, fluorescence data support the hypothesis of the presence of other NOEA binding sites on BSA, likely affecting Trp-134 environment. The presence of similar binding sites is not measurable on HSA, because it lacks of the second Trp residue.  相似文献   

20.
The interaction of a fluorinated surfactant, sodium perfluorooctanoate, with human serum albumin (HSA) has been investigated by a combination of ultraviolet-circular dichroism (UV-CD) spectroscopy and potentiometry (by a home-built ion-selective electrode) techniques to detect and characterize the conformational transitions of HSA. By using difference spectroscopy, the transition was followed as a function of temperature, and the data were analyzed to obtain the parameters characterizing the thermodynamics of unfolding. The results indicate that the presence of surfactant drastically changes the melting unfolding, acting as a structure stabilizer and delaying the unfolding process. Potentiometric measurements were used to determine the binding isotherms and binding capacity for this system. The isotherm shows a high affinity of surfactant molecules for HSA. The average number of surfactant molecules absorbed per protein molecule (at 28 mM of surfactant concentration) was found to be approximately 900, about 6 g of surfactant per gram of protein. The shape of the binding capacity curve and the relation between binding capacity and extend of cooperativity were examined. From these analysis, the values of g (number of ligand-binding sites), KH (Hill binding constant), and nH (Hill coefficient) were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号