首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Numerous data suggest that mitochondrial activity is involved in the regulation of cell growth and differentiation. Therefore, we have studied the changes in mitochondrial activity in avian myoblast cultures (QM7 line) undergoing differentiation or in BrdU-treated, differentiation-deficient cells. As we have previously shown that triiodothyronine and v-erb A expression stimulate myogenic differentiation, we have also observed their influence upon mitochondrial activity. Comparison of control and BrdU-treated myoblasts indicated that precocious differentiation events were associated with a stimulation of citrate synthase and cytochrome oxidase activities. They also induced a transient decrease in mitochondrial membrane potential assessed by rhodamine 123 uptake. In control myoblasts, a general stimulation of mitochondrial activity was recorded at cell confluence, prior to terminal differentiation. These events did not occur in BrdU-treated myoblasts, thus indicating that they were tightly linked to myoblast commitment. Whereas no significant triiodothyronine influence could be detected upon mitochondrial activity, we observed that v-erb A expression significantly depresses the mitochondrial membrane potential in control myoblasts. This action was not observed in BrdU-treated myoblasts, thus suggesting that it involves an indirect pathway linked to differentiation. Moreover, the oncoprotein abrogated the decrease in E2-PDH subunit level observed at cell confluence. These data underline that changes in mitochondrial activity occurred prior to myoblast terminal differentiation and could be involved in the processes regulating myogenesis. In addition, they provide the first evidence that the v-erb A oncoprotein influences mitochondrial activity. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Transforming growth factor beta 1 (TGF-beta 1) is an inhibitor of skeletal muscle myoblast differentiation. Myoblast differentiation is dependent on the expression of certain myogenic differentiation genes and is affected by cell interaction with the extracellular matrix. We have searched for events in the differentiation process of L6E9 rat myoblasts that may be involved in the inhibitory action of TGF-beta 1. Elevated expression of the myogenic differentiation gene, myogenin, which is thought to play a central role in the differentiation process, occurs 10 h after the shift of L6E9 myoblasts to differentiation medium. Elevation of myogenin mRNA is blocked by TGF-beta 1 added at the time of the shift. This effect is preceded by, and might be related to, a rapid up-regulation of junB mRNA observed in TGF-beta 1-treated L6E9 myoblasts. However, TGF-beta 1 can also block myogenic differentiation in cells transfected with the myogenin gene under the control of a constitutive SV40 viral promoter. The nature of a mechanism that could mediate the inhibitory action of TGF-beta 1 without blocking myogenin mRNA expression is suggested by the observations that (a) TGF-beta 1 upregulates type I collagen expression and deposition in L6E9 myoblasts, (b) a fibrillar type I collagen layer inhibits L6E9 myoblast differentiation, and (c) inhibition of L6E9 myoblast differentiation by a type I collagen layer occurs without a block in myogenin expression. Thus, the data suggest that inhibition of L6E9 myoblast differentiation by TGF-beta 1 may be accomplished by at least two mechanisms acting in concert. One mechanism leads to a block in the expression of myogenin whereas the other mechanism may involve TGF-beta 1-induced changes in cell adhesion that either block the action of myogenic differentiation gene products or prevent the function of other as yet unknown components of the myogenic differentiation pathway.  相似文献   

4.
Proper muscle function is dependent on spatial and temporal control of gene expression in myofibers. Myofibers are multinucleated cells that are formed, repaired and maintained by the process of myogenesis in which progenitor myoblasts proliferate, differentiate and fuse. Gene expression is dependent upon proteins that require facilitated nuclear import, however little is known about the regulation of nucleocytoplasmic transport during the formation of myofibers. We analyzed the role of karyopherin alpha (KPNA), a key classical nuclear import receptor, during myogenesis. We established that five karyopherin alpha paralogs are expressed by primary mouse myoblasts in vitro and that their steady-state levels increase in multinucleated myotubes, suggesting a global increase in demand for classical nuclear import during myogenesis. We used siRNA-mediated knockdown to identify paralog-specific roles for KPNA1 and KPNA2 during myogenesis. KPNA1 knockdown increased myoblast proliferation, whereas KPNA2 knockdown decreased proliferation. In contrast, no proliferation defect was observed with KPNA4 knockdown. Only knockdown of KPNA2 decreased myotube growth. These results identify distinct pathways involved in myoblast proliferation and myotube growth that rely on specific nuclear import receptors suggesting that regulation of classical nuclear import pathways likely plays a critical role in controlling gene expression in skeletal muscle.  相似文献   

5.
Myostatin, a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to be a negative regulator of myogenesis. Here we show that myostatin functions by controlling the proliferation of muscle precursor cells. When C(2)C(12) myoblasts were incubated with myostatin, proliferation of myoblasts decreased with increasing levels of myostatin. Fluorescence-activated cell sorting analysis revealed that myostatin prevented the progression of myoblasts from the G(1)- to S-phase of the cell cycle. Western analysis indicated that myostatin specifically up-regulated p21(Waf1, Cip1), a cyclin-dependent kinase inhibitor, and decreased the levels and activity of Cdk2 protein in myoblasts. Furthermore, we also observed that in myoblasts treated with myostatin protein, Rb was predominately present in the hypophosphorylated form. These results suggests that, in response to myostatin signaling, there is an increase in p21 expression and a decrease in Cdk2 protein and activity thus resulting in an accumulation of hypophosphorylated Rb protein. This, in turn, leads to the arrest of myoblasts in G(1)-phase of cell cycle. Thus, we propose that the generalized muscular hyperplasia phenotype observed in animals that lack functional myostatin could be as a result of deregulated myoblast proliferation.  相似文献   

6.
7.
BACKGROUND/AIMS: TGF-beta1 plays a major role in extracellular matrix (ECM) accumulation in tissue fibrosis. Connective tissue growth factor appears to play a critical role in this effect. Endoglin is a component of the transforming growth factor b (TGF-beta) receptor complex. Endoglin is upregulated by TGF-beta1, but its functional role in ECM regulation is unknown. Using rat myoblasts as a model system, we have assessed the role of endoglin on regulating CTGF expression and ECM synthesis and accumulation in the presence or absence of TGF-beta1. METHODS: L6E9 myoblast cell line was transfected with human endoglin, and collagen, fibronectin and CTGF production was assessed by Western blot and by proline incorporation to collagen proteins. RESULTS: Northern blot analysis revealed that parental rat myoblasts L6E9 do not express endogenous endoglin. Upon endoglin transfection, endoglin-expressing cells displayed a decreased CTGF expression and decreased collagen and fibronectin accumulation respect to mock transfectants. Northern blot analysis also revealed a decreased alpha2 (I) procollagen mRNA expression in endoglin transfectants. TGF-beta1 treatment induced an increase in CTGF expression and collagen synthesis and accumulation in L6E9 myoblasts. This effect was significantly lower in endoglin-transfected than in mock-transfected cells. CONCLUSION: These results demonstrate that endoglin expression negatively regulates basal and TGF-beta1-induced CTGF and collagen expression and synthesis.  相似文献   

8.
Addition of fetal calf serum (FCS) to serum-deprived L6J1 rat myoblasts increases fos-like immunoreactivity. The nuclear immunoreactivity reached a maximum 2 h after serum addition. Effects of the c-fos protein on myoblast proliferation were analyzed in L6J1 rat myoblasts transfected with the murine c-fos gene under control of a metallothionein promoter. L6J1 myoblasts with elevated expression of transfected c-fos reached higher cell densities than neo transfected control myoblasts when approaching a stationary phase in normal culture conditions (5% FCS). The differences in cell densities were even more pronounced at low serum concentrations (0.5% FCS). c-fos transfected cells also had a faster growth rate than did control cells in serum-free medium supplemented with calcium chloride, lithium chloride, sodium selenite, hydrocortisone, and insulin. The cell morphology of c-fos transfected L6J1 myoblasts was not affected compared to control myoblasts. These results suggest that c-fos protein expression in L6J1 myoblasts is activated by serum and that mitogenic stimulation of L6J1 myoblasts is facilitated by the presence of elevated amounts of c-fos protein.  相似文献   

9.
Cytosolic sialidase Neu2 has been implicated in myoblast differentiation. Here we observed a significant upregulation of Neu2 expression during differentiation of murine C2C12 myoblasts. This was evidenced both as an increase in Neu2 mRNA steady-state levels and in the cytosolic sialidase enzymatic activity. To understand the biological significance of Neu2 upregulation in myoblast differentiation, C2C12 cells were stably transfected with the rat cytosolic sialidase Neu2 cDNA. Neu2 overexpressing clones were characterized by a marked decrement of cell proliferation and by the capacity to undergo spontaneous myoblast differentiation also when maintained under standard growth conditions. This was evidenced by the formation of myogenin-positive myotubes and by a significant decrease in the nuclear levels of cyclin D1 protein. No differentiation was on the contrary observed in parental and mock-transfected cells under the same experimental conditions. The results indicate that Neu2 upregulation per se is sufficient to trigger myoblast differentiation in C2C12 cells.  相似文献   

10.
11.
Voltage-dependent K(+) channels (Kv) are involved in the proliferation of many types of cells, but the mechanisms by which their activity is related to cell growth remain unclear. Kv antagonists inhibit the proliferation of mammalian cells, which is of physiological relevance in skeletal muscle. Although myofibres are terminally differentiated, some resident myoblasts may re-enter the cell cycle and proliferate. Here we report that the expression of Kv1.5 is cell-cycle dependent during myoblast proliferation. In addition to Kv1.5 other Kv, such as Kv1.3, are also up-regulated. However, pharmacological evidence mainly implicates Kv1.5 in myoblast growth. Thus, the presence of S0100176, a Kv antagonist, but not margatoxin and dendrotoxin, led to cell cycle arrest during the G(1)-phase. The use of selective cell cycle blockers showed that Kv1.5 was transiently accumulated during the early G(1)-phase. Furthermore, while myoblasts treated with S0100176 expressed low levels of cyclin A and D(1), the expression of p21(cip-1) and p27(kip1), two cyclin-dependent kinase inhibitors, increased. Our results indicate that the cell cycle-dependent expression of Kv1.5 is involved in skeletal muscle cell proliferation.  相似文献   

12.
13.
Sphingosine kinase (SphK) is a conserved lipid kinase that catalyzes the formation of sphingosine 1-phosphate (S1P), an important lipid mediator, which regulates fundamental biological processes. Here, we provide evidence that SphK is required for the achievement of cell growth arrest as well as myogenic differentiation of C2C12 myoblasts. Indeed, SphK activity, SphK1 protein content and S1P formation were found to be enhanced in myoblasts that became confluent as well as in differentiating cells. Enforced expression of SphK1 reduced the myoblast proliferation rate, enhanced the expression of myogenic differentiation markers and anticipated the onset of differentiated muscle phenotype. Conversely, down-regulation of SphK1 by specific silencing by RNA interference or overexpression of the catalytically inactive SphK1, significantly increased cell growth and delayed the beginning of myogenesis; noticeably, exogenous addition of S1P rescued the biological processes. Importantly, stimulation of myogenesis in SphK1-overexpressing myoblasts was abrogated by treatment with short interfering RNA specific for S1P(2) receptor. This is the first report of the role of endogenous SphK1 in myoblast growth arrest and stimulation of myogenesis through the formation of S1P that acts as morphogenic factor via the engagement of S1P(2).  相似文献   

14.
Myoblast proliferation and differentiation are essential for skeletal muscle regeneration. Myoblast proliferation is a critical step in the growth and maintenance of skeletal muscle. The precise action of inorganic arsenic on myoblast growth has not been investigated. Here, we investigated the in vitro effect of inorganic arsenic trioxide (As2O3) on the growth of C2C12 myoblasts. As2O3 decreased myoblast growth at submicromolar concentrations (0.25–1 μM) after 72 h of treatment. Submicromolar concentrations of As2O3 did not induce the myoblast apoptosis. Low-concentration As2O3 (0.5 and 1 μM) significantly suppressed the myoblast cell proliferative activity, which was accompanied by a small proportion of bromodeoxyuridine (BrdU) incorporation and decreased proliferating cell nuclear antigen (PCNA) protein expression. As2O3 (0.5 and 1 μM) increased the intracellular arsenic content but did not affect the reactive oxygen species (ROS) levels in the myoblasts. Cell cycle analysis indicated that low-concentrations of As2O3 inhibited cell proliferation via cell cycle arrest in the G1 and G2/M phases. As2O3 also decreased the protein expressions of cyclin D1, cyclin E, cyclin B1, cyclin-dependent kinase (CDK) 2, and CDK4, but did not affect the protein expressions of p21 and p27. Furthermore, As2O3 inhibited the phosphorylation of Akt. Insulin-like growth factor-1 significantly reversed the inhibitory effect of As2O3 on Akt phosphorylation and cell proliferation in the myoblasts. These results suggest that submicromolar concentrations of As2O3 alter cell cycle progression and reduce myoblast proliferation, at least in part, through a ROS-independent Akt inhibition pathway.  相似文献   

15.
The involvement of soluble growth-promoting factors in stretch-induced hypertrophy of the Patagialis muscle (PAT) in the chicken wing was investigated. Soluble extracts were prepared from young chicken PAT muscles made hypertrophic by passive stretch and from unstretched contralateral controls. Extracts were tested for their ability to stimulate cell proliferation and creatine phosphokinase (CPK) activity in primary monolayer cultures of chick embryo muscle cells. Factors were present in muscle extracts which showed a dose-dependent stimulation of cell proliferation and CPK activity in vitro. Passive stretch for 5 days produced a rapid hypertrophy of the PAT which was accompanied by a dramatic increase in the activity of the growth factor(s). Release of stretch resulted in an arrest of growth and an immediate fall in growth factor activity. The difference in growth-stimulating activity between control and stretched PAT extracts could be demonstrated in chicken transferrin-sensitive chick myoblast cultures. Stretch thus induces an increase in a class-specific growth factor, possibly Transferrin, in the PAT. Stretched PAT extracts stimulated: (a) chick myoblast proliferation to a greater extent than an optimum concentration of chick embryo extract, and (b) CPK activity in vitro to a greater extent than excess Transferrin. Both control and stretched PAT extracts supported the growth of rat myoblasts. We conclude that PAT muscle extracts also contain unknown growth factor(s) which are different from Transferrin.  相似文献   

16.
The development of skeletal muscle is a complex process involving the proliferation, differentiation, apoptosis, and changing of muscle fiber types in myoblasts. Many reports have described the involvement of microRNAs in the myogenesis of myoblasts. In this study, we found that the expression of miR-152 was gradually down-regulated during myoblast proliferation, but gradually up-regulated during the differentiation of myoblasts. Transfection with miR-152 mimics restrained cell proliferation and decreased the expression levels of cyclin E, CDK4, and cyclin D1, but promoted myotube formation and significantly increased the mRNA expression levels of MyHC, MyoD, MRF4, and MyoG in C2C12 myoblasts. However, treatment with miR-152 inhibitors promoted cell proliferation and restrained differentiation. Moreover, over-expression of miR-152 significantly decreased E2F3 production in C2C12 myoblasts. A luciferase assay confirmed that miR-152 could bind to the 3′ UTR of E2F3. In conclusion, this study showed that miR-152 inhibited proliferation and promoted myoblast differentiation by targeting E2F3.  相似文献   

17.

Background

Mitochondria can sense signals linked to variations in energy demand to regulate nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. Rhabdomyosarcoma cells are characterized by their failure to both irreversibly exit the cell cycle and complete myogenic differentiation. However, it is currently unknown whether mitochondria are involved in the failure of rhabdomyosarcoma cells to differentiate.

Methodology/Principal Findings

Mitochondrial biogenesis and metabolism were studied in rat L6E9 myoblasts and R1H rhabdomyosacoma cells during the cell cycle and after 36 hours of differentiation. Using a combination of flow cytometry, polarographic and molecular analyses, we evidenced a marked decrease in the cardiolipin content of R1H cells cultured in growth and differentiation media, together with a significant increase in the content of mitochondrial biogenesis factors and mitochondrial respiratory chain proteins. Altogether, these data indicate that the mitochondrial inner membrane composition and the overall process of mitochondrial biogenesis are markedly altered in R1H cells. Importantly, the dysregulation of protein-to-cardiolipin ratio was associated with major deficiencies in both basal and maximal mitochondrial respiration rates. This deficiency in mitochondrial respiration probably contributes to the inability of R1H cells to decrease mitochondrial H2O2 level at the onset of differentiation.

Conclusion/Significance

A defect in the regulation of mitochondrial biogenesis and mitochondrial metabolism may thus be an epigenetic mechanism that may contribute to the tumoral behavior of R1H cells. Our data underline the importance of mitochondria in the regulation of myogenic differentiation.  相似文献   

18.
Objectives: The aim of this study was to evaluate whether hypoxia and/or erythropoietin would be able to modulate proliferation/differentiation processes of rat and human myoblasts. Materials and methods: Rat L6 and primary human myoblasts were grown in 21% or 1% O2 in the presence or absence of recombinant human erythropoietin (RhEpo). Presence of erythropoietin receptors (EpoR) was assayed using RT‐PCR and Western blotting techniques. Cell proliferation was evaluated by determining the doubling time and kinetics of cultures by counting cells. Cell differentiation was analysed by determining myogenic fusion index using antibodies against the myosin heavy chain. Expression of myogenin and myosin heavy chain (MHC) proteins were evaluated using the Western blotting technique. Results: After 96 h culture in growth medium for 2.5 and 9 h, doubling time of L6 and human primary myoblasts respectively, had increased in 1% O2 conditions (P < 0.01). Kinetics of culture showed alteration in proliferation at 72 h in L6 myoblast cultures and at 4 days in human primary myoblasts. The myogenic fusion index had reduced by 30% in L6 myoblasts and by 20% in human myoblasts (P < 0.01). Expression of myogenin and MHC had reduced by around 50%. Despite presence of EpoR mRNA and protein, RhEpo did not counteract the effects of hypoxia either in L6 cells or in human myoblasts. Conclusions: The data show that exposure to hypoxic conditions (1% O2) of rat and human myoblasts altered their proliferation and differentiation processes. They also show that Epo is not an efficient growth factor to counteract this deleterious effect.  相似文献   

19.
Decorin, a small leucine-rich proteoglycan, plays an important role in the regulation of cell growth. Our recent study has shown that immobilized decorin in the collagen matrix sequesters myostatin into the extracellular matrix and prevents its inhibitory action to myoblast proliferation in vitro. However, it still remains unclear whether free decorin could affect the proliferation and differentiation of myogenic cells by regulating myostatin activity. In the present study, we generated stable clonal C2C12 myoblasts that were over-expressing decorin, and showed that decorin over-expressing cells had an increased rate of proliferation as compared to control cells. Decorin over-expressing cells formed multi-giant hypertrophic myotubes with an elongated morphology and larger size as compared to control cells, although the initiation of differentiation in decorin over-expressing cells was somewhat delayed as compared to control cells. Western blot analysis demonstrated that MyoD expression in decorin over-expressing cells was lower than that in control cells until 12 h after induction to differentiate. At 48-h differentiation, the expressions of MyoD, p21 and myogenin were dramatically increased in cells that over-expressed decorin. Furthermore, we revealed that over-expression of decorin suppressed the activity of myostatin endogenously synthesized in C2C12 myoblasts and attenuated the signaling of exogenous myostatin. Consistent with these results, knock-down of decorin impairs C2C12 myoblast growth by increasing the sensitivity to exogenous myostatin. These results clearly show that decorin enhances the proliferation and differentiation of C2C12 myoblasts through suppressing myostatin activity.  相似文献   

20.
Stretch-induced myoblast proliferation is dependent on the COX2 pathway   总被引:3,自引:0,他引:3  
Skeletal muscle increases in size due to weight bearing loads or passive stretch. This growth response is dependent in part upon myoblast proliferation. Although skeletal muscles are responsive to mechanical forces, the effect on myoblast proliferation remains unknown. To investigate the effects of mechanical stretch on myoblast proliferation, primary myoblasts isolated from Balb/c mice were subjected to 25% cyclical uniaxial stretch for 5 h at 0.5 Hz. Stretch stimulated myoblast proliferation by 32% and increased cell number by 41% 24 and 48 h after stretch, respectively. COX2 mRNA increased 3.5-fold immediately poststretch. Prostaglandin E2 and F2alpha increased 2.4- and 1.6-fold 6 h after stretch, respectively. Because COX2 has been implicated in regulating muscle growth and regeneration, we hypothesized that stretched myoblasts may proliferate via a COX2-dependent mechanism. We employed two different models to disrupt COX2 activity: (1) treatment with a COX2-selective drug, and (2) transgenic mice null for COX2. Treating myoblasts with a COX2-specific inhibitor blocked stretch-induced proliferation. Likewise, stretched COX2-/- myoblasts failed to proliferate compared to controls. However, supplementing stretched, COX2-/- myoblasts with prostaglandin E2 or fluprostenol increased proliferation. These data suggest that the COX2 pathway is critical for myoblast proliferation in response to stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号