首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanylation of tRNA by a lysate of rabbit reticulocytes was reported previously by Farkas and Singh. This reaction was investigated further using 18 purified E. coli tRNAs as acceptors.Results showed that only tRNATyr, tRNAHis, tRNAAsn and tRNAAsp which contain the modified nucleoside Q in the anticodon acted as acceptors. Analysis of the nucleotide sequences in the guanylated tRNA showed that guanine specifically replaced Q base in these tRNAs.  相似文献   

2.
Drosophila tRNA can be guanylated by a crude enzyme from rabbit reticulocytes. Guanylating activity is also present in crude extracts of adult Drosophila. A major product of this reaction as well as several minor ones were resolved by RPC-5 chromatography. The main substrate of both the Drosophila and rabbit reticulocyte enzymes was the non-Q-containing aspartic acid tRNA, tRNA2gammaAsp. The QU-lacking (gamma) forms of asparagine, histidine and tyrosine tRNAs were also substrates and gave rise to the minor products of the reaction. In contrast, the Q- or Q*-containing (delta) forms of these tRNAs appear not to be substrates. The evidence strongly suggests that the guanyating enzyme is involved in Q biosynthesis and would be better termed a guanine replacement or pre-Q insertion enzyme.  相似文献   

3.
Queuosine (Q), found exclusively in the first position of the anticodons of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr), is synthesized in eucaryotes by a base-for-base exchange of queuine, the base of Q, for guanine at tRNA position 34. This reaction is catalyzed by the enzyme tRNA-guanine transglycosylase (EC 2.4.2.29). We measured the specific release of queuine from Q-5'-phosphate (queuine salvage) and the extent of tRNA Q modification in 6 human tumors carried as xenografts in immune-deprived mice. Q-deficient tRNA was found in 3 of the tumors but it did not correlate with diminished queuine salvage. The low tRNA Q content of one tumor, the HxGC3 colon adenocarcinoma, prompted us to examine a HxGC3-derived cell line, GC3/M. GC3/M completely lacks Q in its tRNA and measurable tRNA-guanine transglycosylase activity; the first example of a higher eucaryotic cell which lacks this enzyme. Exposure of GC3/M cells to 5-azacytidine induces the transient appearance of Q-positive tRNA. This result suggests that at least one allele of the transglycosylase gene in GC3/M cells may have been inactivated by DNA methylation. In clinical samples, we found Q-deficient tRNA in 10 of 46 solid tumors, including 2 of 13 colonic carcinomas.  相似文献   

4.
Studies of the chromatographic behavior of mammalian tRNAs, from several sources, on acylated DBAE-cellulose indicate that species of tRNA Asn , tRNA Asp and tRNA His can be retained on this matrix, while species of tRNA Tyr, tRNA Asn and tRNA Asp are not retained. Treatment of total rat liver tRNA with cyanogen bromide and subsequent chromatography on Aminex A-28 columns demonstrated that these tRNA species might contain Q (or Q*) nucleoside. However, comparable studies of the tRNA isolated from Walker 256 rat mammary tumor tissue demonstrated that this tumor tRNA almost totally lacks the hypermodified nucleosides Q and Q*. In addition, we have found that at least the major species of rat liver tRNA Asn contains the Q nucleoside. These studies indicate that chromatography on the acylated DBAE-cellulose matrix, couple with the analytical ion-exchange chromatography of cyanogen bromide treated and untreated amino-acyl-tRNA can be a valuable technique for the determination of alterations in the Q (or Q*) nucleoside content of the tRNAs isolated from normal and tumor tissues.  相似文献   

5.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

6.
Three queuosine derivatives (Q-derivatives) have been found at position 34 of four mammalian so-called Q-tRNAs: queuosine (Q) in tRNA(Asn) and tRNA(His), mannosyl-queuosine (manQ) in tRNA(Asp), and galactosyl-queuosine (galQ) in tRNA(Tyr). An analytical procedure based on the combined means of purified tRNA isolation from liver cells and ribonucleoside analysis by reverse-phase high performance liquid chromatography coupled with real-time UV-spectrometry (RPLC-UV) was developed for the quantitative analysis of the three Q-derivatives present in total tRNA from liver tissues and liver cell cultures. Using this analytical procedure, the rates of Q-tRNA modification were studied in total tRNAs from various mammalian hepatic cells. Our results show that the four Q-tRNAs are fully modified in liver tissues from adult mammals, regardless of the mammal species. However, a lack in the Q-modification level was observed in Q-tRNAs from newborn rat liver, as well in Q-tRNAs from normal rat liver cell cultures growing in a low queuine content medium, and from a rat hepatoma cell line. It is noteworthy that in all cases of Q-tRNA hypomodification, our analytical procedure showed that tRNA(Asp) is always the least affected by the hypomodification. The biological significance of this phenomenon is discussed.  相似文献   

7.
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.  相似文献   

8.
In this study, we compare the efficiency of Asn tRNA from mammalian sources with and without the highly modified queuosine (Q) base in the wobble position of its anticodon and Asn tRNA from yeast, which naturally lacks Q base, to promote frameshifting. Interestingly, no differences in the ability of the two mammalian Asn tRNAs to promote frameshifting were observed, while yeast tRNAAsn–Q promoted frameshifting more efficiently than its mammalian counterparts in both rabbit reticulocyte lysates and wheat germ extracts. The shiftability of yeast Asn tRNA is therefore not due, or at least not completely, to the lack of Q base and most likely the shiftiness resides in structural differences elsewhere in the molecule. However, we cannot absolutely rule out a role of Q base in frameshifting as wheat germ extracts and a lysate depleted of most of its tRNA and supplemented with calf liver tRNA contain both Asn tRNA with or without Q base.  相似文献   

9.
Colicin E5—a tRNase toxin—specifically cleaves QUN (Q: queuosine) anticodons of the Escherichia coli tRNAs for Tyr, His, Asn and Asp. Here, we report the crystal structure of the C-terminal ribonuclease domain (CRD) of E5 complexed with a substrate analog, namely, dGpdUp, at a resolution of 1.9 Å. Thisstructure is the first to reveal the substrate recognition mechanism of sequence-specific ribonucleases. E5-CRD realized the strict recognition for both the guanine and uracil bases of dGpdUp forming Watson–Crick-type hydrogen bonds and ring stacking interactions, thus mimicking the codons of mRNAs to bind to tRNA anticodons. The docking model of E5-CRD with tRNA also suggests its substrate preference for tRNA over ssRNA. In addition, the structure of E5-CRD/dGpdUp along with the mutational analysis suggests that Arg33 may play an important role in the catalytic activity, and Lys25/Lys60 may also be involved without His in E5-CRD. Finally, the comparison of the structures of E5-CRD/dGpdUp and E5-CRD/ImmE5 (an inhibitor protein) complexes suggests that the binding mode of E5-CRD and ImmE5 mimics that of mRNA and tRNA; this may represent the evolutionary pathway of these proteins from the RNA–RNA interaction through the RNA–protein interaction of tRNA/E5-CRD.  相似文献   

10.
Histidyl-tRNAs from foetal and adult sheep liver were compared to their reticulocyte counterparts. The combination of various techniques revealed the existence of two histidyl-tRNA species in reticulocytes, one of which was not retained on acetylated DBAE-cellulose columns and was guanylatable. Three histidyl-tRNA isoacceptors were identified in foetal liver. Two of these species were not adsorbed on acetylated DBAE-cellulose but only one was found to be guanylatable. An identical chromatographic behaviour on RPC-5 columns was observed for guanylated histidyl-tRNAs from both origins. These results suggest the occurrence of a GUG anticodon in these guanine-accepting tRNAs. In foetal liver the amount of guanylatable histidyl-tRNA was estimated to be 7% of the total tRNA population. This observation is in agreement with the erythropoietic function of liver during the foetal life.  相似文献   

11.
Rabbit reticulocytes contain two RNA isoaccepting species for histidine as resolved by various chromatographic methods, while rabbit liver contains only one. These isoacceptors cannot be distinguished on the basis of coding properties, consistent with the "Wobble Hypothesis" (Smith, D.W.E., Meltzer, V.N., and McNamara, A.L. (1974) Biochim. Biophys. Acta 349, 366-375). Their function in hemoglobin synthesis in reticulocyte lysates has been investigated. Each of the tRNA isoacceptors of reticulocytes and the tRNA species of liver can incorporate histidine into positions in hemoglobin encoded by both of the histidine code words, CAC and CAU, and it is likely that each can incorporate histidine into all of the histidine-containing positions of hemoglobin. Even in experiments in which the two histidine tRNA species of reticulocytes are placed together in a lysate and are therefore in competition with each other, each incorporates histidine into all of the histidine-containing positions. There is no evidence that any residues are incorporated preferentially by either of the tRNA species. The two species are attached to reticulocyte ribosomes in the same proportion as they occur in the reticulocyte, also suggesting that neither of them is used preferentially in hemoglobin synthesis. The first of the two reticulocyte histidine isoacceptors and the histidine tRNA of rabbit liver contain Q base.  相似文献   

12.
13.
In the genetically mutated ribonuclease T1 His92Ala (RNase T1 His92Ala), deletion of the active site His92 imidazole leads to an inactive enzyme. Attempts to crystallize RNase T1 His92Ala under conditions used for wild-type enzyme failed, and a modified protocol produced two crystal forms, one obtained with polyethylene glycol (PEG), and the other with phosphate as precipitants. Space groups are identical to wild-type RNase T1, P2(1)2(1)2(1), but unit cell dimensions differ significantly, associated with different molecular packings in the crystals; they are a = 31.04 A, b = 62.31 A, c = 43.70 A for PEG-derived crystals and a = 32.76 A, b = 55.13 A, c = 43.29 A for phosphate-derived crystals, compared to a = 48.73 A, b = 46.39 A, c = 41.10 A for uncomplexed wild-type RNase T1. The crystal structures were solved by molecular replacement and refined by stereochemically restrained least-squares methods based on Fo greater than or equal to sigma (Fo) of 3712 reflections in the resolution range 10 to 2.2 A (R = 15.8%) for the PEG-derived crystal and based on Fo greater than or equal to sigma (Fo) of 6258 reflections in the resolution range 10 to 1.8 A (R = 14.8%) for the phosphate-derived crystal. The His92Ala mutation deletes the hydrogen bond His92N epsilon H ... O Asn99 of wild-type RNase T1, thereby inducing structural flexibility and conformational changes in the loop 91 to 101 which is located at the periphery of the globular enzyme. This loop is stabilized in the wild-type protein by two beta-turns of which only one is retained in the crystals obtained with PEG. In the crystals grown with phosphate as precipitant, both beta-turns are deleted and the segment Gly94-Ala95-Ser96-Gly97 is so disordered that it is not seen at all. In addition, the geometry of the guanine binding site in both mutant studies is different from "empty" wild-type RNase T1 but similar to that found in complexes with guanosine derivatives: the Glu46 side-chain carboxylate hydrogen bonds to Tyr42 O eta; water molecules that are present in the guanine binding site of "empty" wild-type RNase T1 are displaced; the Asn43-Asn44 peptide is flipped such that phi/psi-angles of Asn44 are in alpha L-conformation (that is observed in wild-type enzyme when guanine is bound).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
Deshpande KL  Katze JR 《Gene》2001,265(1-2):205-212
Queuosine (Q) is a 7-deazaguanosine found in the first position of the anticodon of tRNAs that recognize NAU and NAC codons (Tyr, Asn, Asp and His). Eukaryotes synthesize Q by the base-for-base exchange of queuine (Q base) for guanine in the unmodified tRNA, a reaction catalyzed by TGT. A search of the human EST database for sequences with significant homology to the well studied TGT from Escherichia coli identified several candidates for full-length (1.3-1.4 kb) cDNA clones. Three candidate cDNA clones, available from IMAGE Consortium, LLNL, (Lennon et al., 1996, Genomics 33, 151-152) were obtained: IMAGE Clone Id Nos. 611146, 1422928, and 72154. Here we report the complete sequences of these clones. IMAGE:72154 contains an ORF encoding a 44 kDa polypeptide with high homology to bacterial TGTs and was subcloned into the mammalian expression vector pMAMneo-Cat. When this construct was transfected into the TGT-negative cell line, GC(3)/c1 (Gündüz et al., 1992, Biochim. Biophys. Acta 1139, 229-238), it restored the ability of the cells to form Q-containing tRNA. This TGT cDNA sequence is encoded in human chromosome 19 clone CTC-539A10 (GenBank accession no. AC011475), enabling determination of the exon-intron boundaries for the TGT gene. The sequence of IMAGE:611146 is 5'-truncated by 76 bp compared to that from IMAGE:72154 and, except for two differences in the 3'-non-coding region, the remainder of the sequence is identical to that of IMAGE:72154. IMAGE:1422928 is a 1390 bp chimera: the 5'-portion, bp 1-708, is identical to a genomic DNA sequence from chromosome 15 (GenBank accession no. AC067805, bp 148976-149683); the 3'-end, bp 726-1390, is identical to the 3'-end of the TGT cDNA sequence from IMAGE:611146.  相似文献   

16.
Universality and structure of the N-end rule   总被引:47,自引:0,他引:47  
Our previous work has shown that, in the yeast Saccharomyces cerevisiae, any of the eight stabilizing amino-terminal residues confers a long (greater than 20 h) half-life on a test protein beta-galactosidase (beta gal), whereas 12 destabilizing amino-terminal residues confer on beta gal half-lives from less than 3 min to 30 min. We now show that an analogous single-residue code (the N-end rule) operates in an in vitro system derived from mammalian reticulocytes. We also show that the N-end rule has a hierarchical structure. Specifically, amino-terminal Glu and Asp (and also Cys in reticulocytes) are secondary destabilizing residues in that they are destabilizing through their ability to be conjugated to primary destabilizing residues such as Arg. Amino-terminal Gln and Asn are tertiary destabilizing residues in that they are destabilizing through their ability to be converted, via selective deamidation, into secondary destabilizing residues Glu and Asp. Furthermore, in reticulocytes, distinct types of the N-end-recognizing activity are shown to be specific for three classes of primary destabilizing residues: basic (Arg, Lys, His), bulky hydrophobic (Phe, Leu, Trp, Tyr), and small uncharged (Ala, Ser, Thr). Features of the N-end rule in reticulocytes suggest that the exact form of the N-end rule may depend on the cell's physiological state, thereby providing a mechanism for selective destruction of preexisting proteins upon cell differentiation.  相似文献   

17.
Total transfer RNAs were extracted from highly purified potato mitochondria. From quantitative measurements, the in vivo tRNA concentration in mitochondria was estimated to be in the range of 60 microM. Total potato mitochondrial tRNAs were fractionated by two-dimensional polyacrylamide gel electrophoresis. Thirty one individual tRNAs, which could read all sense codons, were identified by aminoacylation, sequencing or hybridization to specific oligonucleotides. The tRNA population that we have characterized comprises 15 typically mitochondrial, 5 'chloroplast-like' and 11 nuclear-encoded species. One tRNA(Ala), 2 tRNAs(Arg), 1 tRNA(Ile), 5 tRNAs(Leu) and 2 tRNAs(Thr) were shown to be coded for by nuclear DNA. A second, mitochondrial-encoded, tRNA(Ile) was also found. Five 'chloroplast-like' tRNAs, tRNA(Trp), tRNA(Asn), tRNA(His), tRNA(Ser)(GGA) and tRNA(Met)m, presumably transcribed from promiscuous chloroplast DNA sequences inserted in the mitochondrial genome, were identified, but, in contrast to wheat (1), potato mitochondria do not seem to contain 'chloroplast-like' tRNA(Cys) and tRNA(Phe). The two identified tRNAs(Val), as well as the tRNA(Gly), were found to be coded for by the mitochondrial genome, which again contrasts with the situation in wheat, where the mitochondrial genome apparently contains no tRNA(Val) or tRNA(Gly) gene (2).  相似文献   

18.
The eukaryotic tRNA:guanine transglycosylase (TGT) catalyses the base-for-base exchange of guanine for queuine (the q-base)--a nutrition factor for eukaryotes--at position 34 of the anticodon of tRNAsGUN (where 'N' represents one of the four canonical tRNA nucleosides), yielding the modified tRNA nucleoside queuosine (Q). This unique tRNA modification process was investigated in HeLa cells grown under either aerobic (21% O2) or hypoxic conditions (7% O2) after addition of chemically synthesized q-base to q-deficient cells. While the q-base was always inserted into tRNA under aerobic conditions, HeLa cells lost this ability under hypoxic conditions, however, only when serum factors became depleted from the culture medium. The inability to insert q into tRNA did not result from a lack of substrate, because the q-base accumulated within these cells against the concentration gradient, suggesting the presence of an active transport system for this base in HeLa cells. The activity of the TGT enzyme was restored after treatment of the cells with the protein kinase C activator, TPA, even in the presence of mRNA or protein synthesis inhibitors. The results indicate that the eukaryotic tRNA modifying enzyme, TGT, is a downstream target of activated protein kinase C.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号