首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R-(+)-Pulegone, a monoterpene ketone, is a potent hepatotoxin. One of the major metabolites of pulegone has been shown to be p-cresol, a glutathione depletor and a known toxin. Allylic hydroxylation of 4-methyl-2-cyclohexenone results in the formation of p-cresol. The present study documents for the first time the involvement of cytochrome P-450 system and the stereochemical preference in this hydroxylation reaction. Incubation of PB-induced rat liver microsomes as well as reconstituted PB-induced cytochrome P-450 system with +/-4-methyl-2-cyclohexenone in the presence of NADPH and O(2) resulted in the formation of 4-hydroxy-4-methyl-2-cyclohexenone and p-cresol. From the assay mixture, the unreacted substrate, viz., 4-methyl-2-cyclohexenone was isolated and purified and its optical rotation was found to be 2.2 (in CHCl(3)). The observed enantiomeric excess in the recovered substrate was further confirmed by circular dichroism (CD) studies. The CD spectrum has a peak at 292nm and a trough at 270nm. The enantiomeric excess in the recovered substrate indicates that the hydroxylation at C-4 position is stereoselective. The significance of these results with respect to pulegone-mediated hepatotoxicity is discussed.  相似文献   

2.
1. The metabolism of 3-(3a alpha-hexahydro-7a beta-methyl-1,5-dioxoindan-4 alpha-yl)propionic acid (III), which is a possible precursor of 2,3,4,6,6a beta, 7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-1H-cyclopenta[f]quinoline-3,7-dione (II) formed from cholic acid (I) by streptomyces rubescens, was investigated by using the same organism. 2. This organism effected amide bond formation, reduction of the carbonyl groups, trans alpha beta-desaturation and R-oriented beta-hydroxylation of the propionic acid side chain and skeleton cleavage, and the following metabolites were isolated as these forms or their derivatives: compound (II), 1,2,3,4 a beta,-5,6,6a beta,7,8,9a alpha,9b beta-dodecahydro-6a beta -methylcyclopental[f][1]benzopyran-3,7-dione (IVa), (1R)-1,2,3,4a beta,5,6,6a beta,7,8,9.9a alpha,9b beta-dodecahydro-1-hydroxy-6a beta-methylcyclopenta[f][1]benzopyran-3,7-dione (IVb), (E)-3-(3aalpha-hexahydro-5 alpha-hydroxy-7a beta-methyl-l-oxo-indan-4 alpha-yl)prop-2-enoic acid (V), (+)-(5R)-5-methyl-4-oxo-octane-1,8-dioic acid (VI), 3-(4-hydroxy-5-methyl-2-oxo-2H-pyran-6-yl)propionic acid (VII) and 3-(3a alpha-hexahydro-1 beta-hydroxy-7a beta-methyl-5-oxoindan-4 alpha-yl)propionic acid (VIII). The metabolites (IVb), (V), (VI) and (VII) were new compounds, and their structures were established by chemical synthesis. 3. The question of whether these metabolites are true degradative intermediates is discussed, and a degradative pathway of compound (III) to the possible precursor of compound (VII), 7-carboxy-4-methyl-3,5-dioxoheptanoyl-CoA (IX), is tentatively proposed. The further degradation of compound (IX) to small fragments is also considered.  相似文献   

3.
The action of some radicinin analogues on the pulse amplitude in urethane anesthetized rats has been studied. The compounds used are:2,7-dimethyl-4H,5H-pyrano[4,3-b]pyran-4,5-dione (I); 2,3-dihydro-2,7-dimethyl-4H,5H-pyrano[4,3-b]pyran-4,5-dione (II) 7,8-dihydro-2,7-dimethyl-4H,5H-pyrano[4,3-b]pyran-4,5-dione (III) 2,3,7,8-tetrahydro-2,7-dimethyl-4H,5H-pyrano[4,3-b]pyran-4,5-dione(IV); 2,3,7,8,4',8'-hexahydro-2,7-dimethyl-4H,5H-pyrano[4, 3-b]pyran-4,5-dione (V); 3-crotonyl-4-hydroxy-6-methyl-2H-pyran-2-one (VI); 3-hexanoyl-4-hydroxy-6-methyl-2H-pyran-2-one (VII); 3-hexanoyl-5,6-dihydro-4-hydroxy-6-methyl-2H-pyran-2-one (VIII). A clear increase in the pulse has been seen with the compounds (II), (V) and (VII) especially at the lowest doses, while a decrease in the pulse is caused by the compounds (I) and (VIII). The studied substances have no effects on systolic blood pressure in normotensive unanesthetized rats.  相似文献   

4.
Urinary metabolites of stanozolol (17 alpha-methyl-17 beta-hydroxy-5 alpha-androst-2-eno(3,2-c)-pyrazole) following oral administration were isolated by chromatography on XAD-2 and by preparative high-performance liquid chromatography (HPLC) and identified by gas chromatography-mass spectrometry (GC/MS) with electron impact (EI)-ionisation. Stanozolol is excreted as a conjugate but is metabolized to a large extent. All identified metabolites are hydroxylated, namely at C-3' of the pyrazole ring and at C-4 beta, C-16 alpha and C-16 beta of the steroid. Less than 5% of the metabolites are found in the unconjugated urine fraction: 3'-hydroxy-stanozolol (II) and 3'-hydroxy-17-epistanozolol (III). Conjugated excreted metabolites are 3'-hydroxystanozolol (II), stanozolol (I), 4 beta-hydroxy-stanozolol (IV), 16 beta-hydroxystanozolol (V), 16 alpha-hydroxystanozolol (VI), two isomers of 3',16-dihydroxystanozolol (VII, VIII), two isomers of 4 beta, 16-dihydroxystanozolol (IX, X) and a 3',?-dihydroxystanozolol (XI). 3'-Hydroxystanozolol, 4 alpha-hydroxystanozolol, 4 beta-hydroxystanozolol, 16 alpha-hydroxy-, 16 alpha-hydroxy-17-epi- and 16 beta-hydroxystanozolol were synthesised to confirm the structural assignment of the main metabolites.  相似文献   

5.
M S Lee  D P Lin  C Y Wang 《Mutation research》1986,172(3):199-209
Caracemide, MeCON(CONHMe)(OCONHMe) (I), is a novel anticancer drug. Since it was derived from acetohydroxamic acid (II), a known mutagen, its potential metabolites and related compounds were synthesized and tested for mutagenicities in S. typhimurium TA98 and TA100. These compounds were: MeNHCONH(OCONHMe) (III), MeCONH(OCONHMe) (IV), MeCONOH(CONHMe) (V), MeNHCOONH2 X HCl (VI), MeNHCONHOH (VII), MeNHCOON(CONHMe)2 (VIII), and NOH(CONHMe)2 (IX). The mutagenicities in the absence of rat liver homogenate were: (VI) much greater than (IV) greater than (II), (III), (V). The other compounds were not mutagenic. (I) was mutagenic only in the presence of rat liver homogenate. The doses required to demonstrate mutagenicities of these compounds were from 0.05 to 5 mumoles/plate. The major hydrolytic products at 25 degrees C, pH 7, were (III), (IV), and (V) from (I); (II) and (III) from (IV); and (II), (III), (VII) and MeNHCONH(OCOMe) (X) from (V). (III) was stable at pH 7. Treatment of (IV) with HCl yielded (VI). Hydrolysis of (III) or (V) with ammonia yielded (VII). These results suggest that caracemide may be activated enzymatically or nonenzymatically by deacetylation or decarbamoylation, and its anticancer activity may be related to the reactivity of its metabolites with DNA. The synthetic procedures and characterizations of new compounds (IV), (V) and (X) are described.  相似文献   

6.
A new synthetic method of cyclotene (3-methyl-2-cyclopenten-2-ol-1-one) (I) and its derivatives has been investigated. The reaction of 2-cyclopenten-2-ol-1-one and aniline in toluene gave the corresponding ketimine derivative (V) in good yield. The methylation of (V) afforded (I) and 5,5-dimethyl-2-cyclopenten-2-ol-1-one (II) as the major reaction products, and 3,5-dimethyl-2-cyclopenten-2-ol-1-one (III) and 3,5,5-trimethyl-2-cyclopenten-2-ol-1-one (II) as the minor products. Similarly, ketimine derivative of (I) was alkylated with methyl iodide and ethyl iodide to yield the corresponding (II), (III), and 5-methyl-5-ethyl-2-cyclopenten-2-ol-1-one (VII), 3-methyl-5-ethyl-2-cyclopenten-2-ol-1-one (VIII), respectively, as the major products.  相似文献   

7.
Catalytic oxidation of p-cresol by ascorbate peroxidase   总被引:2,自引:0,他引:2  
Transient and steady state kinetics, together with a range of chromatographic and spectroscopic techniques, have been used to establish the mechanism and the products of the H(2)O(2)-dependent oxidation of p-cresol by ascorbate peroxidase (APX). HPLC, GC-MS, and NMR analyses are consistent with the formation of 2, 2'-dihydroxy-5,5'-dimethylbiphenyl (II) and 4alpha,9beta-dihydro-8, 9beta-dimethyl-3(4H)-dibenzofuranone (Pummerer's ketone, III) as the major products of the reaction. In the presence of cumene hydroperoxide, two additional products were observed which, from GC and MS analyses, were shown to be 1,1-dimethylbenzylalcohol (IV) and bis-(1-methyl-1-phenyl-ethyl)-peroxide (V). The product ratio II:III was dependent on enzyme concentration: at low concentrations Pummerer's ketone (III) predominates and at high concentrations formation of the biphenyl compound (II) is favored. Steady-state data showed a sigmoidal dependence on [p-cresol] that was consistent with the presence of 2.01 +/- 0.15 binding sites for the substrate (25.0 degrees C, sodium phosphate, pH 7.0, mu = 2.2 mM) and independent of ionic strength in the range 2.2-500 mM. Single turnover kinetic experiments (pH 7.0, 5.0 degrees C, mu = 0.10 M) yielded second-order rate constants for Compound I reduction by p-cresol, k(2), of 5.42 +/- 0.10 x 10(5) M(-1) s(-1), respectively. Rate-limiting reduction of Compound II by p-cresol, k(3), showed saturation kinetics, giving values for K(d) = 1.54 +/- 0.12 x 10(-3) M and k(3) = 18.5 +/- 0.7 s(-1). The results are discussed in the more general context of APX-catalyzed aromatic oxidations.  相似文献   

8.
Seven macrocyclic diesters analogous to hepatotoxic pyrrolizidine alkaloids have been tested in male weanling Wistar rats. The compounds were the succinate (VII), 2,3-dimethylsuccinate (VIII), phthalate (IX), glutarate (X), 2,4-dimethylglutarate (XI), 3,3-dimethylglutarate (XII) and 3,3-pentamethyleneglutarate (XIII) of the synthetic amino dialcohol, synthanecine A. Single doses of these compounds were given i.p. to rats, and liver levels of pyrrolic metabolites were measured 2 h later. For these experiments both normal rats and rats pretreated with the esterase inhibitor tri-orthocresylphosphate (TOCP) were used. In normal rats, low levels of pyrrolic metabolites were formed from compounds VII, IX, X and XI, but these levels were greatly enhanced in rats with inhibited esterase activity. Much higher pyrrole levels were formed from compounds VIII, XII and XIII in normal rats, and esterase inhibition had relatively little effect on their metabolic conversion to pyrroles. This indicated that the last mentioned compounds were relatively resistant to enzymic hydrolysis, whereas VII, IX, X and XI were easily hydrolysed in normal rats, providing an alternative metabolic path which limited their conversion to pyrrolic metabolites. Comparison of results obtained using the 2,4-dimethylglutarate (XI), the 3,3-dimethylglutarate (XII) and the 3,3,-pentamethyleneglutarate (XIII) showed that 3,3-disubstitution but not 2,4-disubstitution in the glutaric acid moiety conferred high resistance to esterase attack. Toxicity tests using four of the compounds confirmed that acute hepatotoxicity was dose related, and associated with the formation of pyrrolic metabolites in the liver. The 3,3-dimethylglutarate (XII) was highly toxic both in normal and in TOCP treated rats, doses of 25-30 mg/kg causing moderate to severe centrilobular necrosis of the liver. In contrast the toxicity of the unsubstituted succinate (VII), glutarate (X) and 2,4-dimethylglutarate (XI) was very low in normal rats but high in rats with inhibited esterase activity. Thus, the glutarate (X) was non-toxic at 200 mg/kg in normal rats, but in TOCP treated rats, in which pyrrolic metabolite formation was enhanced by a factor of 17.5, a 50 mg/kg dose of this compound was severely hepatotoxic. Kidney damage, which was generally limited to the presence of isolated necrotic cells, sometimes accompanied the liver damage caused by these compounds, but acute toxic effects were not observed in any other tissues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The white-rot fungus Pycnoporous cinnabarinus (DMS-1184) was submerged cultured for 22 days under controlled conditions in a bioreactor. After 6, 9, and 15 days of culture the growth medium was supplemented with [5-2H]-labelled ferulic acid (I). The major phenolic compounds identified labelled were four lignans, the methyl esters of ferulic (I) and vanillic acid (VIII), (E)-coniferyl aldehyde (II), (E)-coniferyl alcohol (III), vanillic acid (VIII), vanillin (IX) and vanillyl alcohol (X). The detection of considerable amounts of labelled 4-hydroxy-3-methoxyacetophenone (VII) in the late growth phase suggested the increasing formation and decarboxylation of free 4-hydroxy-3-methoxybenzoylacetic acid (VI) and, thus, a beta-oxidation-like degradation of ferulic acid (I) or its methyl ester to vanillic acid (VIII). 4-Hydroxy-3-methoxybenzoylacetic acid methyl ester (VI) and 3-hydroxy-(4-hydroxy-3-methoxyphenyl)-propanoic acid methyl ester (V) were synthesised and then identified as metabolites in the culture medium. The fungal degradation of the phenyl propenoic side chain of ferulic acid (I), a principal key step of lignin decomposition, appeared to proceed analogous to fatty acids.  相似文献   

10.
Endralazine (I) is a new antihypertensive which is chemically and pharmacologically related to hydralazine and dihydralazine. A sensitive high-performance liquid chromatographic-fluorescence assay for the drug and two of its metabolites [methyltriazoloendralazine (VII) and hydroxymethyltriazoloendralazine (VIII)] in human plasma was developed. After conversion of I and its internal standard to triazolopyridopyridazine derivatives the latter and metabolites were separated by high-performance liquid chromatography and detected using their fluorescence. The limits of detection of the assay were 1 nmol/l for I and VII and 0.1 nmol/l for VIII. Intra-assay coefficients of variation were 2.5–5.1% for I (range 1000–10 nmol/l), 4.2–4.5% for VII (range 100–5 nmol/l) and 3.4–5.7% for VIII (range 100–1 nmol/l). Following oral administration of 5 and 10 mg of I to two normal volunteers (slow acetylators) peak plasma levels of I occurred between 0.75 and 1 h after the dose, and declined in a biexponential fashion. The terminal half-life ranged from 2.8–3.7 h. These results contrast with those obtained for hydralazine in plasma where in vitro and in vivo half-lives were 30 min.  相似文献   

11.
The effect of defoliants butyphos (I), dropp (II), butylcaptacs (III), hinazopin (IV), syhat (V), tetra-n-butylammonium bromide (VI), etrel (VII), gemetrel (VIII), allyl-4-methylpyridinium bromide (IX), 1-amino-cyclopropan-1-carbonate (ACPC) (X) at various concentrations (1 x 10(-5)-2 x 10(-4) M) on respiration, oxidative phosphorylation (OP) and permeability of the inner mitochondrial membrane from rat liver has been studied. It has been established that some of the compounds uncouple OP by increasing the inner mitochondrial membrane permeability for H+ (II) inhibit the respiration in V3 condition and induce less selective permeability for a number of ions (I, III). The other defoliants either induce respiration generally in metabolic states 3 and 4 (IV, VI, IX) or have no effect on the respiration and OP (V, VII, VIII, X). On the whole a good correlation between the common toxicity of the studied preparation (LD50) and their mitochondrial effect has been revealed, therefore the latter can be considered as intracellular "targets" involved in the realization of pesticide action.  相似文献   

12.
From the extract of the fruits of Solanum xanthocarpum, cycloartanol (I), cycloartenol (II), sitosterol (III), stigmasterol (IV), campesterol (V), cholesterol (VI), sitosteryl glucoside (VII), stigmasteryl glucoside (VIII), solamargine (IX), and β-solamargine (X) were identified and an isolated steroid (XI) was identical with 4α-methyl-(24R)-ethylcholest-7-en-3β-ol synthesized from carpesterol.  相似文献   

13.
Calcium binding proteins (CBPs) regulate intracellular levels of calcium (Ca2+) ions. CBPs are particularly interesting from a morphological standpoint, because they are differentially expressed in certain sub-populations of cells in the nervous system of various species of vertebrate animals. However, knowledge on the cellular regulation governing such cell-specific CBP expression is still incomplete. In this work on the L7 segment of the cat spinal cord, we analyzed the localization and morphology of neurons expressing the CBPs calbindin-28 KD (CB), parvalbumin (PV), and calretinin (CR), and co-expressing CB and PV, CB and CR, and PV and CR. Single CBP-positive (+) neurons showed specific distributions: (1) CB was present in small neurons localized in laminae I, II, III and X, in small to medium size neurons in laminae III–VI, and in medium to large neurons in laminae VI–VIII; (2) PV was present in small size neurons in laminae III and IV and in medial portions of laminae V and VI, medium neurons and in lamina X at the border with lamina VII, in medium to large neurons in laminae VII and VIII; (3) CR labeling was detected in small size neurons in laminae I, II, III and VIII, in medium to large size neurons in laminae I and III–VII, and in small to medium size neurons in lamina X. Double labeled neurons were a small minority of the CBP+ cells. Co-expression of CB and PV was seen in 1 to 2% of the CBP+ cells, and they were detected in the ventral and intermediate portions of lamina VII and in lamina X. Co-localization of CB and CR was present in 0.3% of the cells and these cells were localized in lamina II. Double labeling for PV and CR occurred in 6% of the cells, and the cells were localized in ventral part of lamina VII and in lamina VIII. Overall, these results revealed distinct and reproducible patterns of localization of the neurons expressing single CBPs and co-expressing two of them. Distinct differences of CBP expression between cat and other species are discussed. Possible relations between the cat L7 neurons expressing different CBPs with the neurons previously analyzed in cat and other animals are suggested.  相似文献   

14.
The metabolic transformation of methandienone (I) in the horse was investigated. After administration of a commercial drug preparation to a female horse (0.5 mg/kg), urine samples were collected up to 96 h and processed without enzymic hydrolysis. Extraction was performed by a series of solid—liquid and liquid—liquid extractions, thus avoiding laborious purification techniques. For analysis by gas chromatography—mass spectrometry, the extracts were trimethylsilylated. Besides the parent compound I and its C-17 epimer II, three monohydroxylated metabolites were identified: 6β-hydroxymethandienone (III), its C-17 epimer (IV) and 16β-hydroxy-methandienone (V). In addition, three isomers of 6β,16-dihydroxymethandienone (VIa–c) were discovered. Apparently, reduction of the δ4 double bond of 16β-hyroxymethandienone (V) in the horse yields 16β,17β-dihydroxy-17α-methyl-5β-androst-1-en-3-one (VII). Reduction of the isomers VIa–c results in the corresponding 6β,16,17-trihydroxy-17-methyl-5β-androst-1-en-3-ones (VIIIa–c). The data presented here suggest that screening for the isomers of VI and VIII, applying the selected-ion monitoring technique, will be the most successful way of proving methandienone administration to a horse.  相似文献   

15.
After oral administration of metandienone (17 alpha-methyl-androsta-1,4-dien-17 beta-ol-3-one) to male volunteers conjugated metabolites are isolated from urine via XAD-2-adsorption, enzymatic hydrolysis and preparative high-performance liquid chromatography (HPLC). Four conjugated metabolites are identified by gas chromatography-mass spectrometry (GC/MS) with electron impact (EI)-ionization after derivatization with N-methyl-N-trimethyl-silyl-trifluoroacetamide/trimethylsilyl-imidazole (MSTFA/TMS-Imi) and comparison with synthesized reference compounds: 17 alpha-methyl-5 beta-androst-1-en-17 beta-ol-3-one (II), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (III), 17 beta-methyl-5 beta-androst-1-ene-3 alpha,17 alpha-diol (IV) and 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (V). After administration of 40 mg of metandienone four bis-hydroxy-metabolites--6 beta,12-dihydroxy-metandienone (IX), 6 beta,16 beta-dihydroxy-metandienone (X), 6 beta,16 alpha-dihydroxy-metandienone (XI) and 6 beta,16 beta-dihydroxy-17-epimetandienone (XII)--were detected in the unconjugated fraction. The metabolites III, IV and V are excreted in a comparable amount to the unconjugated excreted metabolites 17-epimetandienone (VI), 6 beta-hydroxy-metandienone (VII) and 6 beta-hydroxy-17-epimetandienone (VIII). Whereas the unconjugated excreted metabolites show maximum excretion rates between 4 and 12 h after administration the conjugated metabolites III, IV and V are excreted with maximum rates between 12 and 34 h.  相似文献   

16.
In order to determine the sequence dependence of the conformation of deoxynucleotides, Raman spectra have been obtained for the following oligodeoxynucleotides in aqueous salt solutions and in crystals: d(CpG)(I), d(TGCGCGCA)(II), d(CACGCGTG)(III), d(CGTGCACG)(IV), d(CGCATGCG)(V), d(ACGCGCGT)(VI), d(CGCGTACGCG)(VII), d(CGCACGTGCG)(VIII) and d(CGTGCGCACG)(IX), d(GCTATAGC) (X), d(GCATATGC) (XI), d(GGTATACC) (XII) and d(GGATATCC) (XIII). The normal B type conformation is observed for all the oligomer DNA's at low salt (0.1-1.0 M NaCl) concentration in the temperature range of 0-25 degrees C. It was considered possible that all of the first nine oligomers could go into the Z form in aqueous high salt (5.0-6.0 M NaCl) solutions, and under these conditions the last four were considered candidates to go into the A form. The B-type conformation was found to exist in high salt solutions for (I), (IV), (V), (VI), (X), (XI) and (XIII); the Z or partial Z conformation appears in high salt solution for the oligomers, (II), (III), (VII), (VIII) and (IX); an A or partial A conformation appears in high salt solution for (XII). In the crystalline state, (IV), (VIII), (X), and (XI) stay in the B-form and all of the other oligomers adopt the complete Z-form except for (XII) which crystallizes in the A form. In both the crystal and in aqueous solutions, the identification of the conformation genus was made by means of Raman spectroscopy. In the crystal of (I), grown at pH7.0, guanosine is found to be in C3'-endo/syn conformation and cytidine in C2'-endo/anti, which may be taken as the ideal building block of the typical Z conformation. At pH4, (I) crystallizes in a conformation similar to the B genus. A study of the thermally induced B to Z transition has been carried out for (II) and (III). Based on the analysis of Raman spectra of the alternating pyrimidine-purine oligomers which might be expected to go into the Z form, the tendency for these oligonucleotides to adopt the Z form can be ranked as: d(CGCGCGCG) greater than (II) greater than (III) greater than (V) approximately (VI) greater than (IV) for octamers and (VII) greater than (VIII) greater than (IX) for the decamers. Similarly, those oligomers which might have a tendency to go into the A form could be ranked as (XII) greater than (XIII) approximately (X) greater than (XI). These data should provide help in formulating rules for predicting the sequence dependence of the B to A and B to Z transitions. Some possible rules are explored, but precautions should be taken.  相似文献   

17.
2-Phenyl-6-methyl-4-oxo-4,5,6,7-tetrahydrobenzofuran (II) is converted into racemic 2-phenyl-7-methyl-3-oxa-A-nor-14 beta-estra-1,5(10),6,8-tetraen-17 alpha-ol (VIII).  相似文献   

18.
A study of the degradation of phenol, p-cresol, and m- and p-toluate by Alcaligenes eutrophus 345 has provided evidence that these compounds are metabolized via separate catechol meta-cleavage pathways. Analysis of the enzymes synthesized by wild-type and mutant strains and by strains cured of the plasmid pRA1000, which encodes m- and p-toluate degradation, indicated that two or more isofunctional enzymes mediated several steps in the pathway. The formation of three catechol 2,3-oxygenases and two 2-hydroxymuconic semialdehyde hydrolases was indicated from an examination of the ratio of the specific activities of these enzymes against various substrates. Evidence for two 2-hydroxymuconic semialdehyde dehydrogenases, two 4-oxalocrotonate isomerases and decarboxylases, and three 2-ketopent-4-enoate hydratases was derived from the induction of these enzymes under different growth conditions. Each activity was detected when the wild type was grown in the presence of m-toluate, but not when grown with phenol (except for a hydratase) or p-cresol, whereas in strains cured of pRA1000, growth with phenol or p-cresol, but not with m-toluate, induced these enzymes. Hydroxylation of phenol and p-cresol appears to be mediated by the same enzyme.  相似文献   

19.
Manganese peroxidase (MnP) oxidized 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(4-(hydroxymethyl)-2-methoxyphenoxy) -1,3-dihydroxypropane (I) in the presence of MnII and H2O2 to yield 1-(3,5-dimethoxy-4-hydroxyphenyl)- 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-1-oxo-3-hydroxypropane (II), 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-3-hydroxypropanal (V), syringaldehyde (VI), vanillyl alcohol (VII), and vanillin (VIII). MnP oxidized II to yield 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), vanillyl alcohol (VII), vanillin (VIII), syringic acid (IX), and 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-3-hydroxypropanoic acid (X). A chemically prepared MnIII-malonate complex catalyzed the same reactions. Oxidation of I and II in H2(18)O under argon resulted in incorporation of one atom of 18O into the quinone III and into the hydroquinone IV. Incorporation of one atom of oxygen from H2(18)O into syringic acid (IX) and the phenoxypropanoic acid X was also observed in the oxidation of II. These results are explained by mechanisms involving the initial one-electron oxidation of I or II by enzyme-generated MnIII to produce a phenoxy radical. This intermediate is further oxidized by MnIII to a cyclohexadienyl cation. Loss of a proton, followed by rearrangement of the quinone methide intermediate, yields the C alpha-oxo dimer II as the major product from substrate I. Alternatively, cyclohexadienyl cations are attacked by water. Subsequent alkyl-phenyl cleavage yields the hydroquinone IV and the phenoxypropanal V from I, and IV and the phenoxypropanoic acid X from II, respectively. The initial phenoxy radical also can undergo C alpha-C beta bond cleavage, yielding syringaldehyde (VI) and a C6-C2-ether radical from I and syringic acid (IX) and the same C6-C2-ether radical from II. The C6-C2-ether radical is scavenged by O2 or further oxidized by MnIII, subsequently leading to release of vanillyl alcohol (VII). VII and IV are oxidized to vanillin (VIII) and the quinone III, respectively.  相似文献   

20.
The following 2,3-diaryl-1,3-thiazolidin-4-ones of general formula (A) were synthesized and screened for antimicrobial activity. (formula; see text) where: X = H (I, III, V, VII, IX, XI, XIII, XV, XVII, XIX, XXI, XXIII), CH3 (II, IV, VI, VIII, X, XII, XIV, XVI, XVIII, XX, XXII, XXIV); R = H (I, II, V, VI, VII, VIII, XI, XIII), 4-CH3 (XXI, XXII, XXIII, XXIV), 4-Br (III, IV, IX, X), 2-NO2 (XIII, XIV), 3-NO2 (XV, XVI), 4-NO2 (XVII, XVIII), 4-OCH3 (XIX, XX); R' = H (I, II, III, IV, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII), 4-CH3 (XXIII, XXIV), 3-Br (V, VI), 4-Br (VII, VIII, IX, X), 4-J (XI, XII). These compounds were prepared by the general synthetic procedure previously reported for the 1,3-thiazolidin-4-one derivatives already prepared and screened in this SARs program. The synthetic approach involves the cyclocondensation of the appropriate Schiff bases with alpha-mercaptoalkanoic acids. The prepared compounds were screened against S. aureus, S. beta-haemolititicus, B. subtilis, M. paratuberculosis 607, S. typhi, Kl. pneumoniae, E. coli Bb, Ps, aeruginosa, C. albicans, A. niger, S. cerevisiae by a disk-diffusion assay (Kirby-Bauer modified). The results obtained in this investigation showed that the prepared compounds exhibited varying degrees of antimicrobial activity. They were especially inhibitory toward Gram-positive bacteria, and fungi. 4-Nitroderivatives (XVII), (XVIII), and 2-nitroderivatives (XIV) and (XIII) possessed marked antimicrobial activity against S. aureus, S. beta-haemoliticus, and B. subtilis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号