共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and some properties of a novel heat-stable cis-toluene dihydrodiol dehydrogenase. 下载免费PDF全文
cis-Toluene dihydrodiol dehydrogenase was purified 200-fold from cells of a thermotolerant Bacillus species grown with toluene as the sole source of carbon and energy. The purified enzyme preparation was remarkably heat-stable and exhibited a half-life of 100 min at 80 degrees C, the temperature optimum. The activation energy of the reaction was 36 kJ.mol-1. Isoelectric focusing indicated that the pI of the native enzyme was 6.4 and that of the denatured enzyme 6.5. Although the pH optimum was 9.8, the enzyme was most stable at pH 8. The Mr of the enzyme was approx. 172,000 as determined by gel filtration and 166,000 by polyacrylamide-gel electrophoresis. The enzyme was composed of six apparently identical subunits with Mr values of 29,500. Kinetic analysis revealed that the Km for cis-toluene dihydrodiol was 92 microM and for NAD+ was 80 microM. The apparent Km values for cis-benzene dihydrodiol and cis-naphthalene dihydrodiol were 330 microM and 51 microM respectively. The enzyme was inhibited by mercurials but was unaffected by metal-ion chelators. Steady-state kinetics and product-inhibition patterns suggested that the enzyme mechanism was ordered Bi Bi. 相似文献
2.
Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties 总被引:1,自引:0,他引:1
M Ando T Yoshimoto S Ogushi K Rikitake S Shibata D Tsuru 《Journal of biochemistry》1979,85(5):1165-1172
Formaldehyde dehydrogenase was isolated and purified in an overall yield of 12% from cell-free extract of Pseudomonas putida C-83 by chromatographies on columns of DEAE-cellulose, DEAE-Sephadex A-50, and hydroxyapatite. The purified enzyme was homogeneous as judged by disc gel electrophoresis and was most active at pH 7.8 using formaldehyde as a substrate. The enzyme was also active toward acetaldehyde, propionaldehyde, glyoxal, and pyruvaldehyde, though the reaction rates were low. The enzyme was NAD+-linked but did not require the external addition of glutathione, in contrast with the usual formaldehyde dehydrogenase from liver mitochondria, baker's yeast, and some bacteria. The enzyme was markedly inhibited by Ni2+, Pd2+, Hg2+, p-chloromercuribenzoate, and phenylmethanesulfonyl fluoride. The molecular weight of the enzyme was estimated to be 150,000 by the gel filtration method, and analysis by SDS-polyacrylamide gel electrophoresis indicated that the enzyme was composed of two subunit monomers. Kinetic analysis gave Km values of 67 microM for formaldehyde and 56 microM for NAD+, and suggested that the reaction proceeds by a "Ping-pong" mechanism. The enzyme catalyzed the oxidation of formaldehyde accompanied by the stoichiometric reduction of NAD+, but no reverse reaction was observed. 相似文献
3.
P Goulas 《Biochimica et biophysica acta》1988,957(3):335-339
Carnitine dehydrogenase (carnitine:NAD+ oxidoreductase, EC 1.1.1.108) from Pseudomonas putida IFP 206 catalyzes the oxidation of L-carnitine to 3-dehydrocarnitine. The enzyme was purified 72-fold to homogeneity as judged by polyacrylamide gel electrophoresis. The molecular mass of this enzyme is 62 kDa and consists of two identical subunits. The isoelectric point was found to be 4.7. the carnitine dehydrogenase is specific for L-carnitine and NAD+. The optimum pH for enzymatic activity in the oxidation reaction was found to be 9.0 and 7.0 in the reduction reaction. The optimal temperature is 30 degrees C. The Km values for substrates were determined. 相似文献
4.
Purification and propeties of (plus)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida 总被引:11,自引:15,他引:11 下载免费PDF全文
Cells of Pseudomonas putida, after growth with naphthalene as sole source of carbon and energy, contain an enzyme that oxidizes (+)-cis-1(r),2(s)-dihydroxy-1,2-dihydronaphthalene to 1,2-dihydroxynaphthalene. The purified enzyme has a molecular weight of 102,000 and apparently consists of four 25,500 molecular weight subunits. The enzyme is specific for nicotinamide adenine dinucleotide as an electron acceptor and also oxidizes several other cis-dihydrodiols. However, no enzymatic activity was observed with trans-1,2-dihydronaphthalene, or the K-region cis-dihydrodiols of carcinogenic polycyclic hydrocarbons. 相似文献
5.
Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonas putida 40. 下载免费PDF全文
C A Woolfolk 《Journal of bacteriology》1985,163(2):600-609
The isolation of a xanthine dehydrogenase from Pseudomonas putida 40 which utilizes ferricyanide as an electron acceptor at high efficiency is presented. The new activity is separate from the NAD+ and oxygen-utilizing activities of the same organism but displays a broad pattern for reducing substrates typical of those of previously studied xanthine-oxidizing enzymes. Unlike the previously studied enzymes, the new enzyme appears to lack flavin but possess heme and is resistant to cyanide treatment. However, sensitivity of the purified enzyme to methanol and the selective elimination of the activity when tungstate is added to certain growth media suggest a role for molybdenum. The enzyme is subject to a selective proteolytic action during processing which is not accompanied by denaturation or loss of activity and which is minimized by the continuous exposure of the activity to EDTA and phenylmethylsulfonyl fluoride. Electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate suggests that the enzyme is constructed of subunits with a molecular weight of approximately 72,000. Electrophoresis under native conditions of a purified enzyme previously exposed to magnesium ion reveals a series of major and minor activity bands which display some selectivity toward both electron donors and acceptors. An analysis of the effect of gel concentration on this pattern suggests that the enzyme forms a series of charge and size isomers with a pair of trimeric forms predominating. Comparison of the rate of sedimentation of the enzyme in sucrose gradients with its elution profile from standardized Sepharose 6B columns suggests a molecular weight of 255,000 for the major form of the native enzyme. 相似文献
6.
We purified branched-chain keto acid dehydrogenase to a specific activity of 10 mumol/min per mg of protein from Pseudomonas putida grown on valine. The purified enzyme was active with 2-ketoisovalerate, 2-ketoisocaproate, and 2-keto-3-methylvalerate in a ratio of 1.0:0.8:0.7 but showed no activity with either pyruvate or 2-ketoglutarate. There were four polypeptides in the purified enzyme (molecular weights, 49,000, 46,000, 39,000, and 37,000). The purified enzyme was deficient in the specific lipoamide dehydrogenase produced during growth on valine (molecular weight, 49,000). Branched-chain keto acid dehydrogenase required L-valine, oxidized nicotinamide adenine dinucleotide, coenzyme A, thiamine pyrophosphate, and magnesium chloride. A partially purified preparation catalyzed the oxidation of 2-keto-[1-14C]isovalerate to [14C]carbon dioxide, isobutyryl-coenzyme A, and reduced nicotinamide adenine dinucleotide in equimolar amounts. Both the Km and the Vmax for 2-ketoisovalerate were affected by the addition of L-valine to the assay mixture. However, only the Vmax values for oxidized nicotinamide adenine dinucleotide and coenzyme A were affected when L-valine was present. This suggested that valine acted by affecting the binding of branched-chain keto acids to subunit E1 of the complex. 相似文献
7.
Purification and properties of formylglutamate amidohydrolase from Pseudomonas putida. 总被引:1,自引:3,他引:1 下载免费PDF全文
Formylglutamate amidohydrolase (FGase) catalyzes the terminal reaction in the five-step pathway for histidine utilization in Pseudomonas putida. By this action, N-formyl-L-glutamate (FG) is hydrolyzed to produce L-glutamate plus formate. Urocanate, the first product in the pathway, induced all five enzymes, but FG was able to induce FGase alone, although less efficiently than urocanate did. This induction by FG resulted in the formation of an FGase with electrophoretic mobility identical to that of the FGase induced by urocanate. A 9.6-kilobase-pair HindIII DNA fragment containing the P. putida FGase gene was cloned into the corresponding site on plasmid pBEU1 maintained in Escherichia coli. Insertion of the fragment in either orientation on the vector resulted in expression, but a higher level was noted in one direction, suggesting that the FGase gene can be expressed from either of two vector promoters with different efficiencies or from a single vector promoter in addition to a less efficient Pseudomonas promoter. FGase was purified 1,110-fold from the higher-expression clone in a yield of 10% through six steps. Divalent metal ions stimulated activity, and among those tested (Co, Fe, Zn, Ca, Ni, Cd, Mn, and Mg), Co(II) was the best activator, followed by Fe(II). FGase exhibited a Km of 14 mM for FG and a specific activity of 100 mumol/min per mg of protein in the presence of 5 mM substrate and 0.8 mM CoCl2 at 30 degrees C. The enzyme was maximally active in the range of pH 7 to 8. FGase was found to be a monomer of molecular weight 50,000. N-Acetyl-L-glutamate was not a substrate for the enzyme, but both it and N-formyl-L-aspartate were competitive inhibitors of formylglutamate hydrolysis, exhibiting Ki values of 6 and 9 mM, respectively. The absence of FGase activity as an integral part of histidine breakdown in most other organisms and the somewhat uncoordinated regulation of FGase synthesis with that of the other hut enzymes in Pseudomonas suggest that the gene encoding its synthesis may have evolved separately from the remaining hut genes. 相似文献
8.
Purification and characterization of a heme-containing amine dehydrogenase from Pseudomonas putida. 总被引:3,自引:3,他引:0 下载免费PDF全文
The primary amine dehydrogenase of Pseudomonas putida NP was purified to homogeneity as judged by polyacrylamide gel electrophoresis. Cytochrome c or an artificial electron acceptor was required for amine dehydrogenase activity. The enzyme was nonspecific, readily oxidizing primary monoamines, benzylamine, and tyramine; little or no measurable activity was detected with isoamines, L-ornithine, L-lysine, and certain diamines or polyamines. The pH optima for n-butylamine, benzylamine, and n-propylamine were 7.0, 6.5, and 7.0, respectively. The molecular weight of the enzyme was 112,000 as determined by gel filtration and 95,300 as analyzed by sedimentation equilibrium. Subunit analysis by sodium dodecyl sulfate gel electrophoresis suggested that the enzyme was composed of two nonidentical subunits with molecular weights of 58,000 and 42,000. The absorption spectrum of the purified enzyme was indicative of a hemoprotein, exhibiting absorption maxima at 277, 355, and 408 nm. Reduction with sodium dithionite or amine substrates resulted in absorption maxima at 523 and 552 nm and a shift in the Soret peak to 416 nm. These results suggested that the enzyme is a hemoprotein of the type c cytochrome. There was no evidence that flavins were present. 相似文献
9.
Two acidic and three basic forms of monomeric dihydrodiol dehydrogenase with molecular weights in the range of 36,000-39,000 were purified from human liver. One acidic enzyme (pI 5.2), which was specific for NADP- and dihydrodiols of benzene and naphthalene, was immunologically identified as aldehyde reductase. The other four enzymes oxidized alicyclic alcohols as well as the dihydrodiols using both NADP+ and NAD+ as cofactors, but showed differences in specificity for hydroxysteroids and inhibitor sensitivity. Two of the basic enzymes (pI 9.7 and 9.1) exhibited a 20 alpha-hydroxysteroid dehydrogenase activity and sensitivity to 1,10-phenanthroline, whereas the third basic enzyme (pI 7.6) oxidized some 3 alpha-hydroxysteroids at low rates and was inhibited by cyclopentane-1,1-diacetic acid. Another acidic enzyme, which accounted for the largest amount of enzyme activity in the tissue and appeared in two heterogenous forms with pI values of 5.9 and 5.4, showed a high 3 alpha-hydroxysteroid dehydrogenase activity and was the most sensitive to inhibition by medroxyprogesterone acetate. The Km values of the enzymes, except the pI 5.2 enzyme, for hydroxysteroids (10(-6) to 10(-7) M) were lower than those for xenobiotic alcohols. 相似文献
10.
I L Sin 《Biochimica et biophysica acta》1975,410(1):12-20
Xanthine dehydrogenase (EC 1.2.1.37) from Pseudomonas acidovorans has been purified to near homogeneity (approx. 65-fold). The enzyme has a molecular weight of about 275 000. Electrophoresis in gels containing sodium dodecyl sulphate showed the presence of two types of subunit with molecular weights of about 81 000 and 63 000. Thus the intact molecule probably contains two of each type of subunit. Xanthine and hypoxanthine are good substrates, and NAD+ is an effective electron acceptor. With xanthine and NAD+ as substrates the purified enzyme has a specific activity of about 20 mumol NADH formed/min per mg protein. Michaelis constants for xanthine and NAD+ are 0.07 and 0.12 mM, respectively, and for hypoxanthine and NAD+ 0.29 and 0.16 mM, respectively. 相似文献
11.
Nicotinamide adenine dinucleotide-linked malate dehydrogenase has been purified from Pseudomonas testosteroni (ATCC 11996). The purification represents over 450-fold increase in specific activity. The amino acid composition of the enzyme was determined and found to be quite different from the composition of the malate dehydrogenases from animal sources as well as from Escherichia coli. Despite this difference, however, the data show that the enzymatic properties of the purified enzyme are remarkably similar to those of other malate dehydrogenases that have been previously studied. The Pseudomonas enzyme has a molecular weight of 74,000 and consists of two subunits of identical size. In addition to L-malate, the enzyme slowly oxidizes other four-carbon dicarboylates having an alpha-hydroxyl group of S configuration such as meso- and (-) tartrate. Rate-determining steps, which differ from that of the reaction involving L-malate, are discussed for the reaction involving these alternative substrates. Oxidation of hydroxymalonate, a process previously undetected with other malate dehydrogenases, is demonstrated fluorometrically. Hydroxymalonate and D-malate strongly enhance the fluorescence of the reduced nicotinamide adenine dinucleotide bound to the enzyme. The enzyme is A-stereospecific with respect to the coenzyme. Malate dehydrogenase is present in a single form in the Pseudomonas. The susceptibility of the enzyme to activation or inhibition by its substrates-particularly the favoring of the oxidation of malate at elevated concentrations-strongly resembles the properties of the mitochondrial enzymes. The present study reveals that whereas profound variations in chemical composition have occurred between the prokaryotic and eukaryotic enzymes, the physical and catalytic properties of malate dehydrogenase, unlike lactate dehydrogenase, are well conserved during the evolutionary process. 相似文献
12.
13.
14.
1. Uronic acid dehydrogenase was purified to homogeneity. After a 338-fold purification a yield of 16% was achieved with a specific activity of 81 mumol NADH formed min-1 mg protein-1. 2. The purity of the enzyme was controlled by disc electrophoresis, sodium dodecylsulfate electrophoresis and ultracentrifugation. 3. A molecular weight of 60 000 was determined by gel chromatography and by ultracentrifugation. 4. The native enzyme is composed of two subunits, their molecular weight being 30 000 as estimated by sodium dodecylsulfate electrophoresis. The subunits as such are inactive. 5. The absorption spectrum with a maximum at 278 nm shows no evidence for a prosthetic group. 6. For catalytic activity no SH groups and no metals seem to be necessary. 7. The Michaelis constants determined with the pure enzyme are for glucuronic acid Km = 0.37 mM, galacturonic acid Km = 54 muM and NAD+ (with glucuronic acid) Km = 80 muM. 8. A weak reverse reaction could be observed with glucaric acid lactones at acidic pH. 9. NADH is competitive with NAD+. The inhibitor constant is Ki = 60 muM. 10. The NAD+ binding site seems to be of lower specificity than the uronic acid binding site. 相似文献
15.
Purification and properties of two multiple forms of dihydrodiol dehydrogenase from guinea-pig testis 总被引:1,自引:0,他引:1
NADP+-dependent dihydrodiol dehydrogenase (trans-1,2-dihydrobenzene-1,2-diol: NADP+ oxidoreductase, EC 1.3.1.20) activity in the cytosol of guinea-pig testis was separated into two major and two minor peaks by Q-Sepharose chromatography; one minor form was immunologically cross-reacted with hepatic aldehyde reductase. The two major enzyme forms were purified to homogeneity. One form, which had the highest amount in the tissue, was a monomeric protein with a molecular weight of 32,000 and isoelectric point of 4.2, showed strict specificity for benzene dihydrodiol and NADP+, and reduced pyridine aldehydes, glyceraldehyde and diacetyl at low rates. Another form, with a molecular weight of 36,000 and isoelectric point of 5.0, oxidized n-butanol, glycerol and sorbitol as well as benzene dihydrodiol in the presence of NADP+ or NAD+, and exhibited much higher reductase activity towards various aldehydes, aldoses and diacetyl. The pI 5.0 form was more sensitive to inhibition by sorbinil and p-chloromercuriphenyl sulfonate than the pI 4.2 form and was activated by sulfate ion. The two enzymes did not catalyze the oxidation of hydroxysteroids and xenobiotic alicyclic alcohols and were immunologically different from hepatic 17 beta-hydroxysteroid-dihydrodiol dehydrogenase. The results indicate that guinea-pig testis contains at least two dihydrodiol dehydrogenases distinct from the hepatic enzymes, one of which, the pI 5.0 enzyme form, may be identical to aldose reductase. 相似文献
16.
17.
18.
Methioninase of Pseudomonas putida was purified to homogeneity, as judged by polyacrylamide gel electrophoresis, with a specific activity 270-fold higher than that of the crude extract. 1. The purified enzyme had an S20,w of 8.37, a molecular weight of 160,000, and an isoelectric point of 5.6. 2. A break in the Arrhenius plot was observed at 40 degrees and the activation energies below and above this temperature were 15.5 and 2.97 kcal per mole, respectively. 3. In addition to L-methionine, various S-substituted derivatives of homocysteine and cysteine could serve as substrates. D-Methionine, 2-oxo-4-methylthiobutanoate, and related non sulfur-containing amino acids were inert. Equimolar formation of alpha-ketobutyrate and CH3SH was observed with methionine as a substrate. 4. In addition to the protein peak at 278 nm, two absorption maxima were observed at 345 and 430 nm at pH 7.5. Hydroxylamine removed the enzyme-bound pyridoxal phosphate, resulting in almost complete resolution with the concomitant disappearance of both peaks. Reconstruction of the treated enzyme could be achieved by addition of the cofactor; the Km value was calculated to be 0.37 muM. 5. The reported purified enzyme should be designated as L-methionine methanethiollyase (deaminating). 相似文献